Computer Science > Computation and Language
[Submitted on 2 Apr 2024 (v1), last revised 13 Sep 2024 (this version, v2)]
Title:Understanding How CodeLLMs (Mis)Predict Types with Activation Steering
View PDF HTML (experimental)Abstract:CodeLLMs are transforming software development as we know it. This is especially true for tasks where rule-based approaches fall short, like type prediction. The type prediction task consists in adding a new type annotation to a partially typed program, such that the resulting program is closer to being fully typed. The intractability of rule-based approaches and high cost of manual annotation make CodeLLMs an attractive solution to the problem. However, CodeLLMs are still far from being deployed on the large-scale due to doubts surrounding their reliability.
To shed some light on how CodeLLMs approach type prediction, we investigate what happens when a model mispredicts a type. We show that by applying semantics-preserving edits to code, CodeLLMs are eventually misled into mispredicting type annotations. However, by leveraging activation steering we are able to "steer" the model back to the correct prediction, making models more robust against semantically irrelevant prompt features. We show that steering achieves comparable performance to fine-tuning directly on the type prediction task. Furthermore, we find that steering vectors computed from Python code are effective at correcting TypeScript mispredictions, and vice versa. To our knowledge, this is the first evidence of its kind to suggest that CodeLLMs learn task representations that transfer across languages.
Submission history
From: Francesca Lucchetti [view email][v1] Tue, 2 Apr 2024 12:44:44 UTC (86 KB)
[v2] Fri, 13 Sep 2024 14:56:46 UTC (349 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.