Mathematics > Numerical Analysis
[Submitted on 22 Mar 2024]
Title:Positivity-preserving and energy-dissipating discontinuous Galerkin methods for nonlinear nonlocal Fokker-Planck equations
View PDF HTML (experimental)Abstract:This paper is concerned with structure-preserving numerical approximations for a class of nonlinear nonlocal Fokker-Planck equations, which admit a gradient flow structure and find application in diverse contexts. The solutions, representing density distributions, must be non-negative and satisfy a specific energy dissipation law. We design an arbitrary high-order discontinuous Galerkin (DG) method tailored for these model problems. Both semi-discrete and fully discrete schemes are shown to admit the energy dissipation law for non-negative numerical solutions. To ensure the preservation of positivity in cell averages at all time steps, we introduce a local flux correction applied to the DDG diffusive flux. Subsequently, a hybrid algorithm is presented, utilizing a positivity-preserving limiter, to generate positive and energy-dissipating solutions. Numerical examples are provided to showcase the high resolution of the numerical solutions and the verified properties of the DG schemes.
Submission history
From: Jose A. Carrillo [view email][v1] Fri, 22 Mar 2024 22:47:11 UTC (1,758 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.