Computer Science > Information Theory
[Submitted on 6 Feb 2024]
Title:Vector Approximate Message Passing With Arbitrary I.I.D. Noise Priors
View PDFAbstract:Approximate message passing (AMP) algorithms are devised under the Gaussianity assumption of the measurement noise vector. In this work, we relax this assumption within the vector AMP (VAMP) framework to arbitrary independent and identically distributed (i.i.d.) noise priors. We do so by rederiving the linear minimum mean square error (LMMSE) to accommodate both the noise and signal estimations within the message passing steps of VAMP. Numerical results demonstrate how our proposed algorithm handles non-Gaussian noise models as compared to VAMP. This extension to general noise priors enables the use of AMP algorithms in a wider range of engineering applications where non-Gaussian noise models are more appropriate.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.