Statistics > Machine Learning
[Submitted on 31 Oct 2023]
Title:Choose A Table: Tensor Dirichlet Process Multinomial Mixture Model with Graphs for Passenger Trajectory Clustering
View PDFAbstract:Passenger clustering based on trajectory records is essential for transportation operators. However, existing methods cannot easily cluster the passengers due to the hierarchical structure of the passenger trip information, including multiple trips within each passenger and multi-dimensional information about each trip. Furthermore, existing approaches rely on an accurate specification of the clustering number to start. Finally, existing methods do not consider spatial semantic graphs such as geographical proximity and functional similarity between the locations. In this paper, we propose a novel tensor Dirichlet Process Multinomial Mixture model with graphs, which can preserve the hierarchical structure of the multi-dimensional trip information and cluster them in a unified one-step manner with the ability to determine the number of clusters automatically. The spatial graphs are utilized in community detection to link the semantic neighbors. We further propose a tensor version of Collapsed Gibbs Sampling method with a minimum cluster size requirement. A case study based on Hong Kong metro passenger data is conducted to demonstrate the automatic process of cluster amount evolution and better cluster quality measured by within-cluster compactness and cross-cluster separateness. The code is available at this https URL.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.