Quantum Physics
[Submitted on 19 Oct 2023 (v1), last revised 12 Jan 2025 (this version, v2)]
Title:Generalized quantum data-syndrome codes and belief propagation decoding for phenomenological noise
View PDF HTML (experimental)Abstract:Quantum stabilizer codes often struggle with syndrome errors due to measurement imperfections. Typically, multiple rounds of syndrome extraction are employed to ensure reliable error information. In this paper, we consider phenomenological decoding problems, where data qubit errors may occur between extractions, and each measurement can be faulty. We introduce generalized quantum data-syndrome codes along with a generalized check matrix that integrates both quaternary and binary alphabets to represent diverse error sources. This results in a Tanner graph with mixed variable nodes, enabling the design of belief propagation (BP) decoding algorithms that effectively handle phenomenological errors. Importantly, our BP decoders are applicable to general sparse quantum codes. Through simulations, we achieve an error threshold of more than 3\% for quantum memory protected by rotated toric codes, using solely BP without post-processing. Our results indicate that $d$ rounds of syndrome extraction are sufficient for a toric code of distance $d$. We observe that at high error rates, fewer rounds of syndrome extraction tend to perform better, while more rounds improve performance at lower error rates. Additionally, we propose a method to construct effective redundant stabilizer checks for single-shot error correction. Our simulations show that BP decoding remains highly effective even with a high syndrome error rate.
Submission history
From: Ching-Yi Lai [view email][v1] Thu, 19 Oct 2023 12:23:05 UTC (989 KB)
[v2] Sun, 12 Jan 2025 13:30:50 UTC (982 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.