Computer Science > Sound
[Submitted on 1 Sep 2023]
Title:Mi-Go: Test Framework which uses YouTube as Data Source for Evaluating Speech Recognition Models like OpenAI's Whisper
View PDFAbstract:This article introduces Mi-Go, a novel testing framework aimed at evaluating the performance and adaptability of general-purpose speech recognition machine learning models across diverse real-world scenarios. The framework leverages YouTube as a rich and continuously updated data source, accounting for multiple languages, accents, dialects, speaking styles, and audio quality levels. To demonstrate the effectiveness of the framework, the Whisper model, developed by OpenAI, was employed as a test object. The tests involve using a total of 124 YouTube videos to test all Whisper model versions. The results underscore the utility of YouTube as a valuable testing platform for speech recognition models, ensuring their robustness, accuracy, and adaptability to diverse languages and acoustic conditions. Additionally, by contrasting the machine-generated transcriptions against human-made subtitles, the Mi-Go framework can help pinpoint potential misuse of YouTube subtitles, like Search Engine Optimization.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.