Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 22 Aug 2023]
Title:A Deep Reinforcement Learning based Algorithm for Time and Cost Optimized Scaling of Serverless Applications
View PDFAbstract:Serverless computing has gained a strong traction in the cloud computing community in recent years. Among the many benefits of this novel computing model, the rapid auto-scaling capability of user applications takes prominence. However, the offer of adhoc scaling of user deployments at function level introduces many complications to serverless systems. The added delay and failures in function request executions caused by the time consumed for dynamically creating new resources to suit function workloads, known as the cold-start delay, is one such very prevalent shortcoming. Maintaining idle resource pools to alleviate this issue often results in wasted resources from the cloud provider perspective. Existing solutions to address this limitation mostly focus on predicting and understanding function load levels in order to proactively create required resources. Although these solutions improve function performance, the lack of understanding on the overall system characteristics in making these scaling decisions often leads to the sub-optimal usage of system resources. Further, the multi-tenant nature of serverless systems requires a scalable solution adaptable for multiple co-existing applications, a limitation seen in most current solutions. In this paper, we introduce a novel multi-agent Deep Reinforcement Learning based intelligent solution for both horizontal and vertical scaling of function resources, based on a comprehensive understanding on both function and system requirements. Our solution elevates function performance reducing cold starts, while also offering the flexibility for optimizing resource maintenance cost to the service providers. Experiments conducted considering varying workload scenarios show improvements of up to 23% and 34% in terms of application latency and request failures, while also saving up to 45% in infrastructure cost for the service providers.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.