Computer Science > Software Engineering
[Submitted on 19 Aug 2023]
Title:On-the-fly Improving Performance of Deep Code Models via Input Denoising
View PDFAbstract:Deep learning has been widely adopted to tackle various code-based tasks by building deep code models based on a large amount of code snippets. While these deep code models have achieved great success, even state-of-the-art models suffer from noise present in inputs leading to erroneous predictions. While it is possible to enhance models through retraining/fine-tuning, this is not a once-and-for-all approach and incurs significant overhead. In particular, these techniques cannot on-the-fly improve performance of (deployed) models. There are currently some techniques for input denoising in other domains (such as image processing), but since code input is discrete and must strictly abide by complex syntactic and semantic constraints, input denoising techniques in other fields are almost not applicable. In this work, we propose the first input denoising technique (i.e., CodeDenoise) for deep code models. Its key idea is to localize noisy identifiers in (likely) mispredicted inputs, and denoise such inputs by cleansing the located identifiers. It does not need to retrain or reconstruct the model, but only needs to cleanse inputs on-the-fly to improve performance. Our experiments on 18 deep code models (i.e., three pre-trained models with six code-based datasets) demonstrate the effectiveness and efficiency of CodeDenoise. For example, on average, CodeDenoise successfully denoises 21.91% of mispredicted inputs and improves the original models by 2.04% in terms of the model accuracy across all the subjects in an average of 0.48 second spent on each input, substantially outperforming the widely-used fine-tuning strategy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.