Computer Science > Machine Learning
[Submitted on 19 Mar 2023]
Title:Formulation of Weighted Average Smoothing as a Projection of the Origin onto a Convex Polytope
View PDFAbstract:Our study focuses on determining the best weight windows for a weighted moving average smoother under squared loss. We show that there exists an optimal weight window that is symmetrical around its center. We study the class of tapered weight windows, which decrease in weight as they move away from the center. We formulate the corresponding least squares problem as a quadratic program and finally as a projection of the origin onto a convex polytope. Additionally, we provide some analytical solutions to the best window when some conditions are met on the input data.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.