Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 20 Feb 2023]
Title:Personalized and privacy-preserving federated heterogeneous medical image analysis with PPPML-HMI
View PDFAbstract:Heterogeneous data is endemic due to the use of diverse models and settings of devices by hospitals in the field of medical imaging. However, there are few open-source frameworks for federated heterogeneous medical image analysis with personalization and privacy protection simultaneously without the demand to modify the existing model structures or to share any private data. In this paper, we proposed PPPML-HMI, an open-source learning paradigm for personalized and privacy-preserving federated heterogeneous medical image analysis. To our best knowledge, personalization and privacy protection were achieved simultaneously for the first time under the federated scenario by integrating the PerFedAvg algorithm and designing our novel cyclic secure aggregation with the homomorphic encryption algorithm. To show the utility of PPPML-HMI, we applied it to a simulated classification task namely the classification of healthy people and patients from the RAD-ChestCT Dataset, and one real-world segmentation task namely the segmentation of lung infections from COVID-19 CT scans. For the real-world task, PPPML-HMI achieved $\sim$5\% higher Dice score on average compared to conventional FL under the heterogeneous scenario. Meanwhile, we applied the improved deep leakage from gradients to simulate adversarial attacks and showed the solid privacy-preserving capability of PPPML-HMI. By applying PPPML-HMI to both tasks with different neural networks, a varied number of users, and sample sizes, we further demonstrated the strong robustness of PPPML-HMI.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.