Electrical Engineering and Systems Science > Systems and Control
[Submitted on 9 Dec 2022]
Title:Model-based control algorithms for the quadruple tank system: An experimental comparison
View PDFAbstract:We compare the performance of proportional-integral-derivative (PID) control, linear model predictive control (LMPC), and nonlinear model predictive control (NMPC) for a physical setup of the quadruple tank system (QTS). We estimate the parameters in a continuous-discrete time stochastic nonlinear model for the QTS using a prediction-error-method based on the measured process data and a maximum likelihood (ML) criterion. In the NMPC algorithm, we use this identified continuous-discrete time stochastic nonlinear model. The LMPC algorithm is based on a linearization of this nonlinear model. We tune the PID controller using Skogestad's IMC tuning rules using a transfer function representation of the linearized model. Norms of the observed tracking errors and the rate of change of the manipulated variables are used to compare the performance of the control algorithms. The LMPC and NMPC perform better than the PID controller for a predefined time-varying setpoint trajectory. The LMPC and NMPC algorithms have similar performance.
Submission history
From: Anders Hilmar Damm Andersen [view email][v1] Fri, 9 Dec 2022 12:01:57 UTC (1,671 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.