Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Oct 2022 (v1), last revised 19 Nov 2022 (this version, v3)]
Title:Decoupling Deep Learning for Interpretable Image Recognition
View PDFAbstract:The interpretability of neural networks has recently received extensive attention. Previous prototype-based explainable networks involved prototype activation in both reasoning and interpretation processes, requiring specific explainable structures for the prototype, thus making the network less accurate as it gains interpretability. Therefore, the decoupling prototypical network (DProtoNet) was proposed to avoid this problem. This new model contains encoder, inference, and interpretation modules. As regards the encoder module, unrestricted feature masks were presented to generate expressive features and prototypes. Regarding the inference module, a multi-image prototype learning method was introduced to update prototypes so that the network can learn generalized prototypes. Finally, concerning the interpretation module, a multiple dynamic masks (MDM) decoder was suggested to explain the neural network, which generates heatmaps using the consistent activation of the original image and mask image at the detection nodes of the network. It decouples the inference and interpretation modules of a prototype-based network by avoiding the use of prototype activation to explain the network's decisions in order to simultaneously improve the accuracy and interpretability of the neural network. The multiple public general and medical datasets were tested, and the results confirmed that our method could achieve a 5% improvement in accuracy and state-of-the-art interpretability compared with previous methods.
Submission history
From: Yitao Peng [view email][v1] Sat, 15 Oct 2022 17:05:55 UTC (1,982 KB)
[v2] Tue, 1 Nov 2022 10:01:06 UTC (2,348 KB)
[v3] Sat, 19 Nov 2022 15:51:59 UTC (6,172 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.