Mathematics > Numerical Analysis
[Submitted on 29 Sep 2022]
Title:Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes
View PDFAbstract:In this work we propose a simple but effective high order polynomial correction allowing to enhance the consistency of all kind of boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D and 3D, preserving a high order of accuracy without the need of curved meshes. The method proposed is a simplified reformulation of the Shifted Boundary Method (SBM) and relies on a correction based on the extrapolated value of the in cell polynomial to the true geometry, thus not requiring the explicit evaluation of high order Taylor series. Moreover, this strategy could be easily implemented into any already existing finite element and finite volume code. Several validation tests are presented to prove the convergence properties up to order four for 2D and 3D simulations with curved boundaries, as well as an effective extension to flows with shocks.
Submission history
From: Mirco Ciallella [view email][v1] Thu, 29 Sep 2022 15:58:40 UTC (26,152 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.