Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Sep 2022]
Title:Gait Recognition in the Wild with Multi-hop Temporal Switch
View PDFAbstract:Existing studies for gait recognition are dominated by in-the-lab scenarios. Since people live in real-world senses, gait recognition in the wild is a more practical problem that has recently attracted the attention of the community of multimedia and computer vision. Current methods that obtain state-of-the-art performance on in-the-lab benchmarks achieve much worse accuracy on the recently proposed in-the-wild datasets because these methods can hardly model the varied temporal dynamics of gait sequences in unconstrained scenes. Therefore, this paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes. Concretely, we design a novel gait recognition network, named Multi-hop Temporal Switch Network (MTSGait), to learn spatial features and multi-scale temporal features simultaneously. Different from existing methods that use 3D convolutions for temporal modeling, our MTSGait models the temporal dynamics of gait sequences by 2D convolutions. By this means, it achieves high efficiency with fewer model parameters and reduces the difficulty in optimization compared with 3D convolution-based models. Based on the specific design of the 2D convolution kernels, our method can eliminate the misalignment of features among adjacent frames. In addition, a new sampling strategy, i.e., non-cyclic continuous sampling, is proposed to make the model learn more robust temporal features. Finally, the proposed method achieves superior performance on two public gait in-the-wild datasets, i.e., GREW and Gait3D, compared with state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.