Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 Apr 2022]
Title:PIDGeuN: Graph Neural Network-Enabled Transient Dynamics Prediction of Networked Microgrids Through Full-Field Measurement
View PDFAbstract:A Physics-Informed Dynamic Graph Neural Network (PIDGeuN) is presented to accurately, efficiently and robustly predict the nonlinear transient dynamics of microgrids in the presence of disturbances. The graph-based architecture of PIDGeuN provides a natural representation of the microgrid topology. Using only the state information that is practically measurable, PIDGeuN employs a time delay embedding formulation to fully reproduce the system dynamics, avoiding the dependency of conventional methods on internal dynamic states such as controllers. Based on a judiciously designed message passing mechanism, the PIDGeuN incorporates two physics-informed techniques to improve its prediction performance, including a physics-data-infusion approach to determining the inter-dependencies between buses, and a loss term to respect the known physical law of the power system, i.e., the Kirchhoff's law, to ensure the feasibility of the model prediction. Extensive tests show that PIDGeuN can provide accurate and robust prediction of transient dynamics for nonlinear microgrids over a long-term time period. Therefore, the PIDGeuN offers a potent tool for the modeling of large scale networked microgrids (NMs), with potential applications to predictive or preventive control in real time applications for the stable and resilient operations of NMs.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.