Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 23 Sep 2024]
Title:MAR-DTN: Metal Artifact Reduction using Domain Transformation Network for Radiotherapy Planning
View PDF HTML (experimental)Abstract:For the planning of radiotherapy treatments for head and neck cancers, Computed Tomography (CT) scans of the patients are typically employed. However, in patients with head and neck cancer, the quality of standard CT scans generated using kilo-Voltage (kVCT) tube potentials is severely degraded by streak artifacts occurring in the presence of metallic implants such as dental fillings. Some radiotherapy devices offer the possibility of acquiring Mega-Voltage CT (MVCT) for daily patient setup verification, due to the higher energy of X-rays used, MVCT scans are almost entirely free from artifacts making them more suitable for radiotherapy treatment planning.
In this study, we leverage the advantages of kVCT scans with those of MVCT scans (artifact-free). We propose a deep learning-based approach capable of generating artifact-free MVCT images from acquired kVCT images. The outcome offers the benefits of artifact-free MVCT images with enhanced soft tissue contrast, harnessing valuable information obtained through kVCT technology for precise therapy calibration. Our proposed method employs UNet-inspired model, and is compared with adversarial learning and transformer networks. This first and unique approach achieves remarkable success, with PSNR of 30.02 dB across the entire patient volume and 27.47 dB in artifact-affected regions exclusively. It is worth noting that the PSNR calculation excludes the background, concentrating solely on the region of interest.
Submission history
From: Mubashara Rehman [view email][v1] Mon, 23 Sep 2024 16:04:00 UTC (15,661 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.