Computer Science > Software Engineering
[Submitted on 10 Aug 2024]
Title:SHREC: a SRE Behaviour Knowledge Graph Model for Shell Command Recommendations
View PDF HTML (experimental)Abstract:In IT system operations, shell commands are common command line tools used by site reliability engineers (SREs) for daily tasks, such as system configuration, package deployment, and performance optimization. The efficiency in their execution has a crucial business impact since shell commands very often aim to execute critical operations, such as the resolution of system faults. However, many shell commands involve long parameters that make them hard to remember and type. Additionally, the experience and knowledge of SREs using these commands are almost always not preserved. In this work, we propose SHREC, a SRE behaviour knowledge graph model for shell command recommendations. We model the SRE shell behaviour knowledge as a knowledge graph and propose a strategy to directly extract such a knowledge from SRE historical shell operations. The knowledge graph is then used to provide shell command recommendations in real-time to improve the SRE operation efficiency. Our empirical study based on real shell commands executed in our company demonstrates that SHREC can improve the SRE operation efficiency, allowing to share and re-utilize the SRE knowledge.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.