Computer Science > Cryptography and Security
[Submitted on 25 Apr 2024]
Title:Evolutionary Large Language Models for Hardware Security: A Comparative Survey
View PDF HTML (experimental)Abstract:Automating hardware (HW) security vulnerability detection and mitigation during the design phase is imperative for two reasons: (i) It must be before chip fabrication, as post-fabrication fixes can be costly or even impractical; (ii) The size and complexity of modern HW raise concerns about unknown vulnerabilities compromising CIA triad. While Large Language Models (LLMs) can revolutionize both HW design and testing processes, within the semiconductor context, LLMs can be harnessed to automatically rectify security-relevant vulnerabilities inherent in HW designs. This study explores the seeds of LLM integration in register transfer level (RTL) designs, focusing on their capacity for autonomously resolving security-related vulnerabilities. The analysis involves comparing methodologies, assessing scalability, interpretability, and identifying future research directions. Potential areas for exploration include developing specialized LLM architectures for HW security tasks and enhancing model performance with domain-specific knowledge, leading to reliable automated security measurement and risk mitigation associated with HW vulnerabilities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.