Computer Science > Cryptography and Security
[Submitted on 8 Mar 2024]
Title:SecGPT: An Execution Isolation Architecture for LLM-Based Systems
View PDFAbstract:Large language models (LLMs) extended as systems, such as ChatGPT, have begun supporting third-party applications. These LLM apps leverage the de facto natural language-based automated execution paradigm of LLMs: that is, apps and their interactions are defined in natural language, provided access to user data, and allowed to freely interact with each other and the system. These LLM app ecosystems resemble the settings of earlier computing platforms, where there was insufficient isolation between apps and the system. Because third-party apps may not be trustworthy, and exacerbated by the imprecision of the natural language interfaces, the current designs pose security and privacy risks for users. In this paper, we propose SecGPT, an architecture for LLM-based systems that aims to mitigate the security and privacy issues that arise with the execution of third-party apps. SecGPT's key idea is to isolate the execution of apps and more precisely mediate their interactions outside of their isolated environments. We evaluate SecGPT against a number of case study attacks and demonstrate that it protects against many security, privacy, and safety issues that exist in non-isolated LLM-based systems. The performance overhead incurred by SecGPT to improve security is under 0.3x for three-quarters of the tested queries. To foster follow-up research, we release SecGPT's source code at this https URL.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.