Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Jan 2024]
Title:GEM: Boost Simple Network for Glass Surface Segmentation via Segment Anything Model and Data Synthesis
View PDF HTML (experimental)Abstract:Detecting glass regions is a challenging task due to the ambiguity of their transparency and reflection properties. These transparent glasses share the visual appearance of both transmitted arbitrary background scenes and reflected objects, thus having no fixed this http URL visual foundation models, which are trained on vast amounts of data, have manifested stunning performance in terms of image perception and image generation. To segment glass surfaces with higher accuracy, we make full use of two visual foundation models: Segment Anything (SAM) and Stable this http URL, we devise a simple glass surface segmentor named GEM, which only consists of a SAM backbone, a simple feature pyramid, a discerning query selection module, and a mask decoder. The discerning query selection can adaptively identify glass surface features, assigning them as initialized queries in the mask decoder. We also propose a Synthetic but photorealistic large-scale Glass Surface Detection dataset dubbed S-GSD via diffusion model with four different scales, which contain 1x, 5x, 10x, and 20x of the original real data size. This dataset is a feasible source for transfer learning. The scale of synthetic data has positive impacts on transfer learning, while the improvement will gradually saturate as the amount of data increases. Extensive experiments demonstrate that GEM achieves a new state-of-the-art on the GSD-S validation set (IoU +2.1%). Codes and datasets are available at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.