Impacts of Land Use and Land Cover Change on Non-Point Source Pollution in the Nyabarongo River Catchment, Rwanda
<p>Geographical location of the study area: (<b>a</b>) location at the continent level; (<b>b</b>) location at the country level; (<b>c</b>) sub-catchments with rivers and hydro-meteorological station locations.</p> "> Figure 2
<p>(<b>a</b>) DEM, (<b>b</b>) soil type, (<b>c</b>) slope, (<b>d</b>–<b>f</b>) LULC.</p> "> Figure 3
<p>Fitting of simulated and measured runoff data.</p> "> Figure 4
<p>Fitting of measured TP and simulated data.</p> "> Figure 5
<p>Fitting of measured TN and simulated data.</p> "> Figure 6
<p>Gain and loss in % of land use in the study period.</p> "> Figure 7
<p>Annual load of total nitrogen and outlet points in three LULC phases.</p> "> Figure 8
<p>Spatial distribution of TN (2000, 2010, 2020) in the catchment.</p> "> Figure 9
<p>Annual load of total phosphorus at outlet points in three LULC phases.</p> "> Figure 10
<p>Spatial distribution of TP (2000, 2010, 2020) in the catchment.</p> "> Figure 11
<p>Future projections of the spatial distribution of TN (<b>A</b>) and TP (<b>B</b>) in 2030.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Datasets
2.3. SWAT Model Description
Calibration and Validation
3. Results
3.1. SWAT Model Performances
3.2. Evaluation of Land Use and Land Cover Changes
3.3. Total Nitrogen Trends in Different Land Use Scenarios
3.3.1. Annual Range Simulation Analysis of Total Nitrogen
3.3.2. Spatial Distribution Characteristics of Total Nitrogen
3.4. Total Phosphorus Trends in Different Land Use Scenarios
3.4.1. Simulation Analysis of Total Phosphorus in Annual Range
3.4.2. Spatial Distribution Characteristics of Total Phosphorus
3.5. Estimated Future Loss of TN and TP with the Projected LULC in 2030
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Jiang, T.; Mao, Y.; Wang, F.; Yu, J.; Zhu, C. Current Situation of Agricultural Non-Point Source Pollution and Its Control. Water Air Soil Pollut. 2023, 234, 471. [Google Scholar] [CrossRef]
- Li, H.; Fu, J.; Fan, X.; Yu, J.; He, Z.; Wu, J.; Wu, L.; Zhou, J. Non-point source pollution from human activities increasing the biotic homogenization in urban river network system. bioRxiv 2023. [Google Scholar] [CrossRef]
- Icyimpaye, G. Implementation of Hydrological and Hydraulic Models to Forecast River Flood Risks and Proposition of Management Measures. Master’s Thesis, Pan African University, Yaoundé, Cameroon, 2018. Case Study of Nyabugogo River Basin in Rwanda. [Google Scholar]
- Mudahemuka, P. The Impact of Land Use and Land Cover (LULC) Change on Water Resources and its Implication for Smallholder Farmers in Rwanda. Master’s Thesis, Pan African University, Yaoundé, Cameroon, 2019. A Case Study of Lake Cyohoha North. [Google Scholar]
- Zhang, L.; Wang, Z.; Chai, J.; Fu, Y.; Wei, C.; Wang, Y. Temporal and spatial changes of non-point source N and P and its decoupling from agricultural development in water source area of middle route of the South-to-North Water Diversion Project. Sustainability 2019, 11, 895. [Google Scholar] [CrossRef]
- Dodds, W.K.; Smith, V.H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.H.; Semadeni-Davies, A.F.; Shankar, U.; Zeldis, J.R.; Wheeler, D.M.; Plew, D.R.; Rys, G.J.; Harris, S.R. A national-scale GIS-based system for modelling impacts of land use on water quality. Environ. Model. Softw. 2016, 86, 131–144. [Google Scholar] [CrossRef]
- Zena, K.; Demissie, T.A.; Feyessa, F.F. Evaluating long-term impacts of land use/land cover changes on pollution loads at a catchment scale. Water Sci. Technol. 2024, 90, 75–102. [Google Scholar] [CrossRef]
- Meng, X.; Xu, F.; Huang, Y.; Zhang, X.; Zhang, M. Evolution characteristics and driving factors of potential non-point source pollution risks in a watershed affected by land use changes. Heliyon 2024, 10, e37247. [Google Scholar] [CrossRef]
- Mind’je, R.; Li, L.; Kayumba, P.M.; Mupenzi, C.; Mindje, M.; Hao, J. Exploring a form of pixel-based information value model for flood probability assessment and geo-visualization over an East African basin: A case of Nyabarongo in Rwanda. Environ. Earth Sci. 2023, 82, 402. [Google Scholar] [CrossRef]
- Nambajimana, J.d.D.; He, X.; Zhou, J.; Justine, M.F.; Li, J.; Khurram, D.; Mind’je, R.; Nsabimana, G. Land use change impacts on water erosion in Rwanda. Sustainability 2019, 12, 50. [Google Scholar] [CrossRef]
- Mind’je, R.; Li, L.; Amanambu, A.C.; Nahayo, L.; Nsengiyumva, J.B.; Gasirabo, A.; Mindje, M. Flood susceptibility modeling and hazard perception in Rwanda. Int. J. Disaster Risk Reduct. 2019, 38, 101211. [Google Scholar] [CrossRef]
- Basu, N.B.; Van Meter, K.J.; Byrnes, D.K.; Van Cappellen, P.; Brouwer, R.; Jacobsen, B.H.; Jarsjö, J.; Rudolph, D.L.; Cunha, M.C.; Nelson, N. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci. 2022, 15, 97–105. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Benettin, P.; Van Breukelen, B.M.; Fovet, O.; Howden, N.J.; Ruiz, L.; Van Der Velde, Y.; Wade, A.J. Transit times—The link between hydrology and water quality at the catchment scale. Wiley Interdiscip. Rev. Water 2016, 3, 629–657. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Kachholz, F.; Traenckner, J. Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use. Front. Agric. Sci. Eng. 2018, 5, 420–431. [Google Scholar] [CrossRef]
- Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of watershed-scale water quality and nonpoint source pollution models. Geosciences 2020, 10, 25. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, S.; Liu, L.; Guo, X.; Wang, Z.; Qin, C.; Hao, R.; Lu, J.; Gao, J. Assessing the effects of land use changes on non-point source pollution reduction for the Three Gorges Watershed using the SWAT model. J. Environ. Inform. 2013, 22, 13–26. [Google Scholar] [CrossRef]
- Gasirabo, A.; Xi, C.; Hamad, B.R.; Edovia, U.D. A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda. Land 2023, 12, 1788. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Pradhan, B.; Salleh, A.H.; Alazaiza, M.Y. Spatio-temporal simulation of future urban growth trends using an integrated CA-Markov model. Arab. J. Geosci. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Deng, Y.; Liang, D.; Li, Y.; Gu, Q. Applying water environment capacity to assess the non-point source pollution risks in watersheds. Water Res. 2023, 240, 120092. [Google Scholar] [CrossRef] [PubMed]
- Mind’je, R.; Li, L.; Kayumba, P.M.; Mindje, M.; Ali, S.; Umugwaneza, A. Integrated geospatial analysis and hydrological modeling for peak flow and volume simulation in Rwanda. Water 2021, 13, 2926. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Ndayisaba, F.; Shao, H.; Kayiranga, A.; Fang, X.; Nahayo, L.; Muhire Nyesheja, E.; Tian, G. Extent of cropland and related soil erosion risk in Rwanda. Sustainability 2016, 8, 609. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Henry, M.; Chiozza, F.; Yigini, Y.; Aksoy, E.; Batjes, N.; Boateng, E. Harmonized World Soil Database Version 2.0; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Gunjan, P.; Mishra, S.K.; Lohani, A.K.; Chandniha, S.K. Impact estimation of landuse/land cover changes and role of hydrological response unit in hydrological modelling in a watershed of Mahanadi river basin, India. Nat. Hazards 2023, 119, 1399–1420. [Google Scholar] [CrossRef]
- Nnaji, C.C.; Ogarekpe, N.M.; Nwankwo, E.J. Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria. Environ. Dev. Sustain. 2022, 24, 9598–9622. [Google Scholar] [CrossRef]
- Zhang, Z.; Montas, H.; Shirmohammadi, A.; Leisnham, P.T.; Negahban-Azar, M. Impacts of land cover change on the spatial distribution of nonpoint source pollution based on SWAT model. Water 2023, 15, 1174. [Google Scholar] [CrossRef]
- Almeida, R.A.; Pereira, S.B.; Pinto, D.B. Calibration and validation of the SWAT hydrological model for the Mucuri river basin. Eng. Agrícola 2018, 38, 55–63. [Google Scholar] [CrossRef]
- Sao, D.; Kato, T.; Tu, L.H.; Thouk, P.; Fitriyah, A.; Oeurng, C. Evaluation of different objective functions used in the sufi-2 calibration process of swat-cup on water balance analysis: A case study of the Pursat river basin, Cambodia. Water 2020, 12, 2901. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Chen, J.; Du, C.; Nie, T.; Han, X.; Tang, S. Study of non-point pollution in the Ashe River Basin based on SWAT model with different land use. Water 2022, 14, 2177. [Google Scholar] [CrossRef]
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 47162–47181. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, M.N.; Sample, D.J.; Scott, D.; Wang, X.; Ketabchy, M. The effects of land use characteristics on urban stormwater quality and watershed pollutant loads. Sci. Total Environ. 2021, 773, 145358. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, Z.; Chen, Y.; Li, Y.; Liu, H.; Song, L.; Chen, Y. Assessing non-point source pollution in an apple-dominant basin and associated best fertilizer management based on SWAT modeling. Int. Soil Water Conserv. Res. 2023, 11, 353–364. [Google Scholar] [CrossRef]
Input Data | Scale | Source |
---|---|---|
Land use map | Landsat 8.30 m Resolution | Earth exploration (USGS) |
Soil map | 30 arc-seconds | FAO-UNESCO Soil Map of the World |
DEM | 30 m | USGS (United States Geological Survey) |
Water quality parameters | Monthly, 2010–2020 | Rwanda Water Resources Board (RWB) UNILAK-Environmental Laboratory. |
Rainfall and temperature | Monthly, 1982–2020 | Rwandan Meteorological Agency |
No | Code | Name | Code | Name | |
---|---|---|---|---|---|
1 | Nh7-2/3c | Humic Nitosols | 7 | Fo96-3b | Humic Ferralsols |
2 | Tm10-2bc | Mollic Andosols | 8 | Nd39-3bc | Dystric Nitosols |
3 | Fo42-3b | Humic Ferralsols | 9 | I-N-c | Lithosols |
4 | Tm14-1/2c | Mollic Andosols | 10 | Fh10-3b | Humic Ferralsols |
5 | Nh5-2/3c | Humic Nitosols | 11 | Bh14-3c | Humic Cambisols |
6 | Fo97-3b | Humic Ferralsols |
Year | Path/Row | Acquisition Date | Sensor Type | Spatial Resolution (m) | LULC Name | Source |
---|---|---|---|---|---|---|
2000 | 173/62 | 27 September 2000 | Landsat 7 ETM | 30 | 2000 LULC | USGS |
2010 | 172/61 | 22 July 2010 | Landsat 8 OLI | 30 | 2010 LULC | USGS |
2020 | 172/62 | 27 September 2020 | Landsat 8 OLI | 30 | 2020 LULC | USGS |
No. | Station Name | Latitude | Longitude | Elevation | Year |
---|---|---|---|---|---|
1 | Gatumba | 30.1954 | −1.9495 | 1727 | 1982–2020 |
2 | Ruriba | 30.0139 | −1.977 | 1569 | 1982–2020 |
3 | Nyange | 29.6381 | −2.109 | 2082 | 1982–2020 |
4 | Gasogi | 30.1802 | −1.9701 | 1444 | 1982–2020 |
No | Parameter Name | Description | Min_Value | Max_Value | Fitted_Value | Taget |
---|---|---|---|---|---|---|
1 | a_CN2.mgt | SCS runoff curve coefficient | −0.2 | 0.2 | −0.189 | Runoff |
2 | a_ALPHA_BF.gw | Base flow α coefficient | 0 | 1 | 0.330 | Runoff |
3 | a_GW_DELAY.gw | Groundwater hysteresis factor | 30 | 450 | 275.000 | Runoff |
4 | a_GWQMN.gw | Groundwater re-evaporation coefficient | 0 | 2 | 1.500 | Runoff |
5 | a_ESCO.bsn | Soil evaporation compensation factor | 0 | 1 | 0.043 | Runoff |
6 | a_SOL_AWC.sol | Soil water availability | 0 | 1 | 0.203 | Runoff |
7 | a_SOL_BD.sol | Wet capacity of surface soil | 0.5 | 2.5 | 2.080 | Runoff |
8 | a_SLSUBBSN.hru | Average slope length | 10 | 100 | 76.900 | Runoff |
9 | a_OV_N.hru | Manning factor for slope diffuse flow | 0 | 100 | 37.000 | Runoff |
10 | a_LAT_TTIME.hru | Soil flow measurement delay index | 0 | 100 | 40.333 | Runoff |
11 | a_NPERCO.bsn | Nitrogen permeability coefficient | 0 | 1 | 0.257 | Water Quality |
12 | a_PPERCO.bsn | Phosphorus permeability coefficient | 10 | 17.5 | 13.225 | Water Quality |
13 | a_PHOSKD.bsn | Soil phosphorus partition coefficient | 100 | 200 | 186.333 | Water Quality |
14 | a_PSP.bsn | Index of phosphorus effectiveness | 0.01 | 0.7 | 0.127 | Water Quality |
15 | a_N_UPDIS.bsn | Nitrogen absorption distribution parameters | 20 | 100 | 61.333 | Water Quality |
16 | a_P_UPDIS.bsn | Phosphorus absorption distribution parameters | 20 | 100 | 51.733 | Water Quality |
17 | a_FIXCO.bsn | Nitrogen fixation factor | 0 | 1 | 0.263 | Water Quality |
18 | a_CH_ONCO_BSN.bsn | Concentration of organic nitrogen in the river | 0 | 100 | 58.333 | Water Quality |
19 | a_CH_OPCO_BSN.bsn | Concentration of organic phosphorus in the river | 0 | 100 | 83.667 | Water Quality |
20 | a_ORGN_CON.hru | Organic nitrogen concentration in runoff | 0 | 100 | 27.000 | Water Quality |
21 | a_ORGP_CON.hru | Organic phosphorus concentration in runoff | 0 | 50 | 19.167 | Water Quality |
22 | a_BIOMIX.mgt | Biomixing efficiency | 0 | 1 | 0.757 | Water Quality |
23 | a_ERORGP.hru | Organic phosphorus enrichment rate | 0 | 5 | 2.450 | Water Quality |
24 | a_POT_NO3L.hru | Nitrate decay rate in potholes | 0 | 1 | 0.043 | Water Quality |
25 | a_ERORGN.hru | Enrichment rate of organic nitrogen | 0 | 5 | 4.217 | Water Quality |
2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 | ||||
---|---|---|---|---|---|---|---|---|---|
Classes | Area_Sqkm | Area_Sqkm | Area_Sqkm | Variation | % | Variation | % | Variation | % |
Forestland | 2603.76 | 2777.50 | 1255.32 | 173.74 | 6.67 | −1522.18 | −54.80 | −1348.44 | −51.79 |
Grassland | 235.47 | 251.38 | 638.05 | 15.91 | 6.75 | 386.67 | 153.82 | 402.58 | 170.97 |
Cropland | 5223.81 | 5000.12 | 6021.22 | −223.70 | −4.28 | 1021.10 | 20.42 | 797.41 | 15.26 |
Built-up | 78.39 | 97.03 | 210.25 | 18.64 | 23.78 | 113.22 | 116.68 | 131.86 | 168.20 |
Wetland | 85.54 | 106.62 | 106.02 | 21.09 | 24.65 | −0.60 | −0.56 | 20.49 | 23.95 |
Water | 134.77 | 129.04 | 130.79 | −5.74 | −4.26 | 1.75 | 1.36 | −3.98 | −2.96 |
Total area | 8361.75 |
2010 | 2020 | 2030 | 2010–2020 | 2020–2030 | |||
---|---|---|---|---|---|---|---|
Classes | Area_Sqkm | Area_Sqkm | Area_Sqkm | Variation | % | Variation | % |
Forestland | 2777.4988 | 1255.3198 | 1159.4289 | −1522.1789 | −54.8039 | −95.8909 | −7.6388 |
Grassland | 251.3760 | 638.0492 | 549.5345 | 386.6733 | 153.8227 | −88.5147 | −13.8727 |
Cropland | 5000.1154 | 6021.2184 | 6169.3167 | 1021.1030 | 20.4216 | 148.0983 | 2.4596 |
Built-up | 97.0321 | 210.2529 | 241.3488 | 113.2208 | 116.6839 | 31.0959 | 14.7897 |
Wetland | 106.6249 | 106.0250 | 110.3860 | −0.5999 | −0.5627 | 4.3611 | 4.1132 |
Water bodies | 129.0359 | 130.7897 | 131.6326 | 1.7538 | 1.3591 | 0.8429 | 0.6445 |
Total area | 8361.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsanzabaganwa, J.; Chen, X.; Liu, T.; Hakorimana, E.; Mind’je, R.; Gasirabo, A.; Fabiola, B.; Umugwaneza, A.; Schadrack, N. Impacts of Land Use and Land Cover Change on Non-Point Source Pollution in the Nyabarongo River Catchment, Rwanda. Water 2024, 16, 3033. https://doi.org/10.3390/w16213033
Nsanzabaganwa J, Chen X, Liu T, Hakorimana E, Mind’je R, Gasirabo A, Fabiola B, Umugwaneza A, Schadrack N. Impacts of Land Use and Land Cover Change on Non-Point Source Pollution in the Nyabarongo River Catchment, Rwanda. Water. 2024; 16(21):3033. https://doi.org/10.3390/w16213033
Chicago/Turabian StyleNsanzabaganwa, Justin, Xi Chen, Tie Liu, Egide Hakorimana, Richard Mind’je, Aboubakar Gasirabo, Bakayisire Fabiola, Adeline Umugwaneza, and Niyonsenga Schadrack. 2024. "Impacts of Land Use and Land Cover Change on Non-Point Source Pollution in the Nyabarongo River Catchment, Rwanda" Water 16, no. 21: 3033. https://doi.org/10.3390/w16213033
APA StyleNsanzabaganwa, J., Chen, X., Liu, T., Hakorimana, E., Mind’je, R., Gasirabo, A., Fabiola, B., Umugwaneza, A., & Schadrack, N. (2024). Impacts of Land Use and Land Cover Change on Non-Point Source Pollution in the Nyabarongo River Catchment, Rwanda. Water, 16(21), 3033. https://doi.org/10.3390/w16213033