Microplastics Exposure Aggravates Synovitis and Pyroptosis in SLE by Activating NF-κB and NRF2/KEAP1 Signaling
"> Figure 1
<p>The MP structure damages the synovial structure and aggravate synovitis in SLE mice: (<b>A</b>) flow chart of the experimental design; (<b>B</b>) HE staining of mouse knee synovium, demonstrating thickening of synovial layers (Black arrow) and increased vasculature (Blue arrow); (<b>C</b>) histological scoring of the synovium based on HE staining; (<b>D</b>) MASSON’s trichrome staining of mouse knee synovium, indicating increased fiber content (Black arrow); (<b>E</b>–<b>H</b>) immunohistochemical staining illustrating the expression of MMP-13 and MMP-19 in the synovium of the knee joint of mice, along with quantification of their expression levels. Red arrowheads denote positively stained cells. Data are presented as mean ± standard deviation (SD). ns indicates no statistical significance. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 (vs. 0 mg/kg group); ## <span class="html-italic">p</span> < 0.01 (vs. C57BL/6J group), with <span class="html-italic">n</span> = 6 per group.</p> "> Figure 2
<p>MPs promote synovial cell apoptosis in SLE mice: (<b>A</b>,<b>C</b>) immunofluorescence staining demonstrating the expression of CASPASE-3 and BCL-2 in the synovium of the knee joints of mice, along with (<b>B</b>,<b>D</b>) quantification of expression; (<b>E</b>) TUNEL staining and (<b>F</b>) quantification of the rate of TUNEL-positive cells. DAPI stains the nuclei blue, and white arrowheads indicate positively stained cells. Data are presented as mean ± SD. ns indicates no statistical significance. ** <span class="html-italic">p</span> < 0.01 (vs. 0 mg/kg group); ## <span class="html-italic">p</span> < 0.01 (vs. C57BL/6J group), <span class="html-italic">n</span> = 6 per group.</p> "> Figure 3
<p>MPs compound synovial inflammation in SLE mice. (<b>A</b>–<b>H</b>) Immunofluorescence staining illustrating the expression of IL-1β, IL-18, IL-6, and TNF-α in the synovium of the knee joint of mice, along with quantification of expression. DAPI stains the nuclei blue, and white arrowheads indicate positively stained cells. Data are presented as mean ± SD. ns indicates no statistical significance. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 (vs. 0 mg/kg group); ## <span class="html-italic">p</span> < 0.01 (vs. C57BJ/6 group), with <span class="html-italic">n</span> = 6 per group.</p> "> Figure 4
<p>MPs aggravate synovial pyroptosis in SLE mice. (<b>A</b>–<b>C</b>) Immunofluorescence staining showing the expression of NLRP3, CASPASE-1, and GSDMD in the synovium of the knee joint of mice, along with (<b>D</b>–<b>F</b>) quantification of expression. DAPI stains nuclei blue, and white arrowheads indicate positively stained cells. Data are expressed as mean ± SD. ns indicates no statistical significance. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 (vs. 0 mg/kg group); ## <span class="html-italic">p</span> < 0.01 (vs. C57BL/6J group), with <span class="html-italic">n</span> = 6 per group.</p> "> Figure 5
<p>Effects of MPs exposure on oxidative stress and the NF-κB signaling pathway in SLE mice. (<b>A</b>–<b>C</b>) Immunofluorescence staining was conducted to assess the expression of NRF2, KEAP1, and HO-1 in the synovium of the knee joints of mice, while (<b>H</b>–<b>J</b>) illustrates the quantification of these expressions. (<b>D</b>–<b>G</b>) Immunofluorescence staining for P65, P-P65, IκBα, and p-IκBα in the knee joint synovium of mice is presented, with (<b>K</b>–<b>N</b>) showing the corresponding quantification. DAPI was used to stain nuclei in blue, and white arrowheads indicate positively stained cells. Data are expressed as mean ± SD. ns indicates no statistical significance. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 (vs. 0 mg/kg group); ## <span class="html-italic">p</span> < 0.01 (vs. C57BL/6J group), with <span class="html-italic">n</span> = 6 per group.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents
2.2. Animals
2.3. Experimental Design
2.4. Histological Analyses
2.5. Immunofluorescence (IF) and Immunohistochemical (IHC) Staining Analyses
2.6. TUNEL Assay
2.7. Statistics Analysis
3. Results
3.1. MPs Damage Synovial Structure and Aggravate Synovial Inflammation in SLE Mice
3.2. MPs Promote Synovial Cell Apoptosis in SLE Mice
3.3. MPs Compound Synovial Inflammation in SLE Mice
3.4. MPs Aggravate Synovial Pyroptosis in Mice with SLE
3.5. Effects of MPs Exposure on Oxidative Stress and the NF-κB Signaling Pathway in SLE Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Browne, M.A.; Halpern, B.S.; Hentschel, B.T.; Hoh, E.; Karapanagioti, H.K.; Rios-Mendoza, L.M.; Takada, H.; Teh, S.; Thompson, R.C. Policy: Classify plastic waste as hazardous. Nature 2013, 494, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Gao, L.; Feng, L.; Xiong, X.; Yang, J.; Zhang, W.; Huang, L.; Li, L.; Luo, P. Toxicological effects of microplastics in renal ischemia-reperfusion injury. Environ. Toxicol. 2024, 39, 2350–2362. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xu, Y.; Wei, Y.; Guo, Y.; Wang, Y.; Song, P.; Yu, J. Gut microbiota and liver metabolomics reveal the potential mechanism of Lactobacillus rhamnosus GG modulating the liver toxicity caused by polystyrene microplastics in mice. Environ. Sci. Pollut. Res. Int. 2024, 31, 6527–6542. [Google Scholar] [CrossRef]
- Ali, N.; Katsouli, J.; Marczylo, E.L.; Gant, T.W.; Wright, S.; de la Serna, J.B. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024, 99, 104901. [Google Scholar] [CrossRef]
- Smith, M.D. The normal synovium. Open Rheumatol. J. 2011, 5, 100–106. [Google Scholar] [CrossRef]
- Nziza, N.; Jeziorski, E.; Delpont, M.; Cren, M.; Chevassus, H.; Carbasse, A.; Mahe, P.; Abassi, H.; Joly-Monrigal, P.; Schordan, E.; et al. Synovial-Fluid miRNA Signature for Diagnosis of Juvenile Idiopathic Arthritis. Cells 2019, 8, 1521. [Google Scholar] [CrossRef]
- Shumilova, A.; Vital, E.M. Musculoskeletal manifestations of systemic lupus erythematosus. Best. Pract. Res. Clin. Rheumatol. 2023, 37, 101859. [Google Scholar] [CrossRef]
- Zayat, A.S.; Yusof, Y.M.; Wakefield, R.J.; Conaghan, P.G.; Emery, P.; Vital, E.M. The role of ultrasound in assessing musculoskeletal symptoms of systemic lupus erythematosus: A systematic literature review. Rheumatology 2016, 55, 485–494. [Google Scholar] [CrossRef]
- Ceccarelli, F.; Perricone, C.; Cipriano, E.; Massaro, L.; Natalucci, F.; Capalbo, G.; Leccese, I.; Bogdanos, D.; Spinelli, F.R.; Alessandri, C.; et al. Joint involvement in systemic lupus erythematosus: From pathogenesis to clinical assessment. Semin. Arthritis Rheum. 2017, 47, 53–64. [Google Scholar] [CrossRef]
- Elias, E.E.; Lyons, B.; Muruve, D.A. Gasdermins and pyroptosis in the kidney. Nat. Rev. Nephrol. 2023, 19, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem. Sci. 2017, 42, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, K.; Wang, D.; Wang, Y.; Lu, H.; Zhao, H.; Xing, M. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-kappaB-NLRP3-GSDMD and AMPK-PGC-1alpha axes. Sci. Total Environ. 2022, 840, 156727. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Lei, Z.; Cui, L.; Hou, Y.; Yang, L.; An, R.; Wang, Q.; Li, S.; Zhang, H.; Zhang, L. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicol. Environ. Saf. 2021, 212, 112012. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ. 2019, 662, 246–253. [Google Scholar] [CrossRef]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 2021, 449, 152665. [Google Scholar] [CrossRef]
- Chen, L.; Qi, M.; Zhang, L.; Yu, F.; Tao, D.; Xu, C.; Xu, S. Di(2-ethylhexyl) phthalate and microplastics cause necroptosis and apoptosis in hepatocytes of mice by inducing oxidative stress. Environ. Toxicol. 2023, 38, 1226–1238. [Google Scholar] [CrossRef]
- Shengchen, W.; Jing, L.; Yujie, Y.; Yue, W.; Shiwen, X. Polystyrene microplastics-induced ROS overproduction disrupts the skeletal muscle regeneration by converting myoblasts into adipocytes. J. Hazard. Mater. 2021, 417, 125962. [Google Scholar] [CrossRef]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Saurin, S.; Meineck, M.; Claßen, P.; Boedecker-Lips, S.C.; Pautz, A.; Weinmann-Menke, J. Sex-specific differences in SLE—Significance in the experimental setting of inflammation and kidney damage in MRL-Fas(lpr) mice. Autoimmunity 2024, 57, 2377098. [Google Scholar] [CrossRef]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404 Pt B, 124004. [Google Scholar] [CrossRef]
- Wu, H.; Li, R.; Zhong, Y. Effects of Fuyuan capsule on expression of IL-1β, MMP-13 and iNOS insynovium in experimental osteoarthritis of rabbits. J. Chongqing Med. Univ. 2010, 35, 1004–1009. (In Chinese) [Google Scholar]
- Bostan, N.; Ilyas, N.; Akhtar, N.; Mehmood, S.; Saman, R.U.; Sayyed, R.; Shatid, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Pandiaraj, S. Toxicity assessment of microplastic (MPs); a threat to the ecosystem. Environ. Res. 2023, 234, 116523. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Tang, Z. Microplastics aggravates rheumatoid arthritis by affecting the proliferation/migration/inflammation of fibroblast-like synovial cells by regulating mitochondrial homeostasis. Int. Immunopharmacol. 2023, 120, 110268. [Google Scholar]
- Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. [Google Scholar] [CrossRef]
- Cheleschi, S.; Gallo, I.; Barbarino, M.; Giannotti, S.; Mondanelli, N.; Giordano, A.; Tenti, S.; Fioravanti, A. MicroRNA Mediate Visfatin and Resistin Induction of Oxidative Stress in Human Osteoarthritic Synovial Fibroblasts Via NF-kappaB Pathway. Int. J. Mol. Sci. 2019, 20, 5200. [Google Scholar] [CrossRef]
- Kobayashi, M.; Harada, S.; Fujimoto, N.; Nomura, Y. Apple polyphenols exhibits chondroprotective changes of synovium and prevents knee osteoarthritis. Biochem. Biophys. Res. Commun. 2022, 614, 120–124. [Google Scholar] [CrossRef]
- Yedier, S.; Yalçınkaya, S.K.; Bostancı, D. Exposure to polypropylene microplastics via diet and water induces oxidative stress in Cyprinus carpio. Aquat. Toxicol. 2023, 259, 106540. [Google Scholar] [CrossRef]
- Wu, B.; Wu, X.; Liu, S.; Wang, Z.; Chen, L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 2019, 221, 333–341. [Google Scholar] [CrossRef]
- Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002, 3, 221–227. [Google Scholar] [CrossRef]
- Poma, P. NF-kappaB and Disease. Int. J. Mol. Sci. 2020, 21, 9181. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, X.; Yan, M.; Yang, M.; Wang, S.; Pan, J.; Li, L.; Tan, J. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-kappaB pathway: Implications for disc degeneration. Biochem. Biophys. Res. Commun. 2019, 516, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Lan, Z.; Xin, Z.; He, C.; Guo, Z.; Xia, X.; Hu, T. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J. Cell Physiol. 2020, 235, 3207–3221. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Chen, Y.; Ding, R.; Feng, L.; Fu, Z.; Yang, S.; Deng, X.; Xie, Z.; Zheng, S. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J. Neuroinflamm. 2017, 14, 119. [Google Scholar] [CrossRef]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
Inflammatory Cell Infiltration | Fibrous Tissue Hyperplasia | Synovial Cell Hyperplasia (Layer Number) | Proliferation of Blood Vessels | |
---|---|---|---|---|
0 | No | No | No hyperplasia (1 to 2 layers) | No |
1 | Sparse and scattered | Small | Small (3–4 layers) | Small |
2 | More | Moderately | Moderately (5–7 layers) | Moderately |
3 | Massive diffuse | Massive | Massive (≥8 layers) | Massive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, W.; He, S.; Zhao, Y.; Jiang, M.; Wang, W.; Yang, L.; Du, W.; Zhuang, W. Microplastics Exposure Aggravates Synovitis and Pyroptosis in SLE by Activating NF-κB and NRF2/KEAP1 Signaling. Toxics 2024, 12, 840. https://doi.org/10.3390/toxics12120840
Zeng W, He S, Zhao Y, Jiang M, Wang W, Yang L, Du W, Zhuang W. Microplastics Exposure Aggravates Synovitis and Pyroptosis in SLE by Activating NF-κB and NRF2/KEAP1 Signaling. Toxics. 2024; 12(12):840. https://doi.org/10.3390/toxics12120840
Chicago/Turabian StyleZeng, Wenxiang, Shiqiao He, Ying Zhao, Minjian Jiang, Wenla Wang, Limeng Yang, Weibin Du, and Wei Zhuang. 2024. "Microplastics Exposure Aggravates Synovitis and Pyroptosis in SLE by Activating NF-κB and NRF2/KEAP1 Signaling" Toxics 12, no. 12: 840. https://doi.org/10.3390/toxics12120840
APA StyleZeng, W., He, S., Zhao, Y., Jiang, M., Wang, W., Yang, L., Du, W., & Zhuang, W. (2024). Microplastics Exposure Aggravates Synovitis and Pyroptosis in SLE by Activating NF-κB and NRF2/KEAP1 Signaling. Toxics, 12(12), 840. https://doi.org/10.3390/toxics12120840