Simultaneous Measurement of Flow Velocity and Electrical Conductivity of a Liquid Metal Using an Eddy Current Flow Meter in Combination with a Look-Up-Table Method
<p>(<b>a</b>) Photograph, (<b>b</b>) coil overview with specifications and (<b>c</b>,<b>d</b>) simulation models of the ECFM.</p> "> Figure 2
<p>Photograph of the GaInSn loop and measurement setup. The red arrows indicate the flow direction of the liquid metal.</p> "> Figure 3
<p>Distribution of the lowest 5% of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> for <span class="html-italic">v</span> and <math display="inline"><semantics> <mi>σ</mi> </semantics></math> under ideal conditions, when taking one parameter combination of the LuT as the unknown parameter combination (<span class="html-italic">v</span> = 0.6 m/s, <math display="inline"><semantics> <mi>σ</mi> </semantics></math> = 3.3 MS/m).</p> "> Figure 4
<p>Evolution of the lowest 5% of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> for <span class="html-italic">v</span> and <math display="inline"><semantics> <mi>σ</mi> </semantics></math> (similar to <a href="#sensors-23-09018-f003" class="html-fig">Figure 3</a>) when adding more coil voltages, frequencies or changing the weighting method. Blue triangles represent <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> of the flow velocity, violet triangles represent <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> of the electrical conductivity.</p> "> Figure 5
<p>Distribution of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> of the flow velocity for <math display="inline"><semantics> <msub> <mi>v</mi> <mi>exp</mi> </msub> </semantics></math> = 0.605 m/s for cases G and J of <a href="#sensors-23-09018-t003" class="html-table">Table 3</a>. The red line indicates the minimum of the MSE distribution while the dashed green line shows the pre-adjusted flow velocity. The diagram on the right shows a comparison of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>v</mi> </mrow> </semantics></math> for all <math display="inline"><semantics> <msub> <mi>v</mi> <mi>exp</mi> </msub> </semantics></math>.</p> "> Figure 6
<p>Distribution of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> of the electrical conductivity for <math display="inline"><semantics> <msub> <mi>v</mi> <mi>exp</mi> </msub> </semantics></math> = 0.605 m/s for cases G and J of <a href="#sensors-23-09018-t003" class="html-table">Table 3</a>. The red line indicates the minimum of the MSE distribution while the dashed green line shows the electrical conductivity of the liquid metal. The diagram on the right shows a comparison of <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>σ</mi> </mrow> </semantics></math> for all <math display="inline"><semantics> <msub> <mi>v</mi> <mi>exp</mi> </msub> </semantics></math>.</p> "> Figure 7
<p>Evolution of <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> from case A to case M when using the measurement data. The red line indicates the minimum of the MSE distribution while the dashed green line shows the pre-adjusted flow velocity or electrical conductivity. Blue triangles represent <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> of the flow velocity, violet triangles represent <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <msub> <mi>E</mi> <mi>Σ</mi> </msub> </mrow> </semantics></math> of the electrical conductivity.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor and Measurement Setup
2.2. Calibration of the Numerical Simulation Model
3. Results
3.1. Creation of the Look-Up-Table and Numerical Validation of the Method
3.2. Experimental Validation
3.3. Measurement Errors
3.3.1. Inductance
3.3.2. Voltage
3.3.3. Flow Rate
3.3.4. Electrical Conductivity of the Liquid Metal
4. Conclusions
- First simultaneous measurement of flow velocity and electrical conductivity of a liquid metal using an ECFM.
- Simplified calibration of the sensor compared to conventional methods.
- Parameter estimation of velocity and conductivity takes less than a second, using only one excitation frequency.
- This method can be applied to many different liquid metals and alloys, different parameters and sensors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIFT | Contactless Inductive Flow Tomography |
ECFM | Eddy Current Flow Meter |
LIA | Lock-In-Amplifier |
LMFBR | Liquid Metal Cooled Fast Breeder Reactors |
LuT | Look-Up-Table |
mad | Median Absolute Deviation |
MSE | Mean Squared Error |
std | Standard Deviation |
TECFM | Transient Eddy Current Flow Meter |
var | Variance |
P | Primary coil |
S1, S2 | Secondary coils |
f | Frequency |
L | Inductance |
n | Number of turns |
r | Voltage magnitude |
Difference of voltage magnitudes | |
v | Flow velocity |
V | Voltage |
w | Weighting factor |
Electrical conductivity | |
Voltage phase shift | |
Difference of Voltage phase shifts |
References
- Stefani, F.; Gundrum, T.; Gerbeth, G. Contactless Inductive Flow Tomography. Phys. Rev. E 2004, 5, 056306. [Google Scholar] [CrossRef] [PubMed]
- Priede, J.; Buchenau, D.; Gerbeth, G. Contactless electromagnetic phase-shift flowmeter for liquid Metals. Meas. Sci. Technol. 2011, 22, 055402. [Google Scholar] [CrossRef]
- Miralles, S.; Verhille, G.; Plihon, N.; Pinton, J.F. The magnetic-distortion probe: Velocimetry in conducting fluids. Rev. Sci. Instrum. 2011, 82, 095112. [Google Scholar] [CrossRef] [PubMed]
- Thess, A.; Votyakov, E.V.; Kolesnikov, Y. Lorentz force velocimetry. Phys. Rev. Lett. 2006, 96, 164501. [Google Scholar] [CrossRef]
- Pulugundla, G.; Heinicke, C.; Karcher, C.; Thess, A. Lorentz force velocimetry with a small permanent magnet. Eur. J. Mech. B Fluids 2013, 41, 23–28. [Google Scholar] [CrossRef]
- Viré, A.; Knaepen, B.; Thess, A. Lorentz force velocimetry based on time-of-flight measurements. Phys. Fluids 2010, 22, 125101. [Google Scholar] [CrossRef]
- Sokolov, I.; Noskov, V.; Pavlinov, A.; Kolesnikov, Y. Lorentz Force Velocimetry for High Speed Liquid Sodium Flow. Magnetohydrodynamics 2016, 52, 481–493. [Google Scholar]
- Zürner, T.; Vogt, T.; Resagk, C.; Eckert, S.; Schumacher, J. Local Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow. Exp. Fluids 2017, 59, 3. [Google Scholar] [CrossRef]
- Lehde, H.; Lang, W.T. Device for Measuring Rate of Fluid. Flow. U.S. Patent 2435043, 27 January 1948. [Google Scholar]
- Costello, T.J.; Laubham, R.L.; Miller, W.R.; Smith, C.R. FFTF Probe-Type Eddy-Current Flowmeter: Wet versus dry Performance Evaluation in Sodium. Nucl. Technol. 1973, 19, 174–180. [Google Scholar] [CrossRef]
- Poornapushpakala, S.; Gomathy, C.; Sylvia, J.I.; Krishnakumar, B.; Kalyanasundaram, P. An analysis on eddy current flowmeter—A review. In Proceedings of the Recent Advances in Space Technology Services and Climate Change 2010, Chennai, India, 13–15 November 2010; pp. 185–188. [Google Scholar]
- Poornapushpakala, S.; Gomathy, C.; Sylvia, J.I.; Babu, B. Design, development and performance testing of fast response electronics for eddy current flowmeter in monitoring sodium flow. Flow Meas. Instrum. 2014, 38, 98–107. [Google Scholar] [CrossRef]
- Pavlinov, A.; Khalilov, R.; Mamikyn, A.; Kolesnichenko, I. Eddy current flowmeter for sodium flow. IOP Conf. Ser. Mater. Sci. Eng. 2017, 208, 012031. [Google Scholar] [CrossRef]
- Kumar, S.S.; Patri, S.; Sharma, R.K.; Punniamoorthy, R.; Paunikar, V.D.; Cyriac, R.J.; Harishkumaran, S.; Vasudevan, P.; Ramakrishna, R.; Sajish, S.D.; et al. Experimental Studies on Qualification of Structural Integrity of Eddy Current Flow Meter. In Proceedings of the 2nd Quadrennial International Conference on Structural Integrity (ICONS), Chennai, India, 14–17 December 2018; pp. 787–799. [Google Scholar]
- Lau, C.; Oleksak, K.; Cetiner, S.M.; Groth, P.; Mauer, C.; Ottinger, D.; Roberts, M.J.; Warmack, B.; Fathy, A.E. Eddy current flow meter model validation with a moving solid rod. Meas. Sci. Techn. 2022, 33, 075301. [Google Scholar] [CrossRef]
- Afflard, A.; Zamansky, R.; Bergez, W.; Tordjeman, P.; Paumel, K. Eddy-Current Flow Meter Response to Spherical Non-Conductive Inclusions Travelling in a Liquid Metal. Magnetohydrodynamics 2022, 58, 501–507. [Google Scholar]
- Shubham; Rajalakshmi, R. Design and Development of Non-Intrusive Eddy Current Flow Meter for High Temperature Liquid Metal Services. In Proceedings of the 1st International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichy, India, 16–18 February 2022; pp. 1–6. [Google Scholar]
- Gall, G.; Lau, C.; Varma, V.; Cetiner, S.; Ottinger, D. Measurement of a radial flow profile with eddy current flow meters and deep neural networks. Meas. Sci. Technol. 2023, 34, 045302. [Google Scholar] [CrossRef]
- Buchenau, D.; Eckert, S.; Gerbeth, G.; Stieglitz, R.; Dierckx, M. Measurement technique developments for LBE flows. J. Nucl. Mat. 2011, 415, 396–403. [Google Scholar] [CrossRef]
- Sharma, P.; Suresh Kumar, S.; Nashine, B.K.; Veerasamy, R.; Krishnakumar, B.; Kalyanasundaram, P.; Vaidyanathan, G. Development, computer simulation and performance testing in sodium of an eddy current flowmeter. Ann. Nucl. Energy 2010, 37, 332–338. [Google Scholar] [CrossRef]
- Sureshkumar, S.; Sabih, M.; Narmadha, S.; Ravichandran, N.; Dhanasekharan, R.; Meikandamurthy, C.; Padmakumar, G.; Vijayashree, R.; Prakash, V.; Rajan, K.K. Utilization of eddy current flow meter for sodium flow measurement in FBRs. Nucl. Eng. Des. 2013, 265, 1223–1231. [Google Scholar] [CrossRef]
- Krauter, N.; Stefani, F. Immersed transient eddy current flow metering: A calibration-free velocity measurement technique for liquid metals. Meas. Sci. Technol. 2017, 28, 105301. [Google Scholar] [CrossRef]
- Looney, R.; Priede, J. Alternative transient eddy-current flowmetering methods for liquid metals. Flow Meas. Instrum. 2019, 65, 150–157. [Google Scholar] [CrossRef]
- Krauter, N.; Eckert, S.; Gundrum, T.; Stefani, F.; Wondrak, T.; Frick, P.; Khalilov, R.; Teimurazov, A. Inductive System for Reliable Magnesium Level Detection in a Titanium Reduction Reactor. Met. Mater. Trans. B 2018, 49B, 2089–2096. [Google Scholar] [CrossRef]
- Krauter, N.; Eckert, S.; Gundrum, T.; Stefani, F.; Wondrak, T.; Khalilov, R.; Dimov, I.; Frick, P. Experimental Validation of an Inductive System for Magnesium Level Detection in a Titanium Reduction Reactor. Sensors 2020, 20, 6798. [Google Scholar] [CrossRef] [PubMed]
- Plevachuk, Y.; Sklyarchuk, V.; Eckert, S.; Gerbeth, G.; Novakovic, R. Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J. Chem. Eng. Data 2014, 59, 757–763. [Google Scholar] [CrossRef]
- Afflard, A.; Zamansky, R.; Paumel, K.; Bergez, W.; Tordjeman, P. Bubble detection in liquid metal by perturbation of eddy currents: Model and experiments. J. Appl. Phys. 2023, 134, 134502. [Google Scholar] [CrossRef]
- Fricke, H. A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems. Phys. Rev. 1924, 24, 575–587. [Google Scholar] [CrossRef]
Coil | L (mH) | (m) | at 0.5, 1, 2 kHz | ||
---|---|---|---|---|---|
P1 | 0.312 | 290 | 283 | - | - |
S1 | 3.37 | 1150 | 1100 | 69 | 83.6, 77.72, 65.86 |
S2 | 3.41 | 1150 | 1108 | −4 |
Conditions | S1, S2 | S | P1 | |||
---|---|---|---|---|---|---|
r | r | r | ||||
v = 0 m/s | 8.1% | 20.6% | 5.2% | 30.8% | 0.2% | 1.9% |
= 3 → 4 MS/m | ||||||
v = 0 → 1 m/s | 0.8% | 0.6% | 62.1% | 111.5% | 0.0% | 0.0% |
= 3 MS/m |
Case | (cm/s) | (MS/m) | S1 | S2 | P1 | r | 500 Hz | 1 kHz | 2 kHz | w | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G | 9.3 | 0.042 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | var |
9.3 | 0.041 | mad | ||||||||||
J | 5.6 | 0.064 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | var |
4.2 | 0.055 | mad | ||||||||||
L | 11.1 | 0.130 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | var |
10.9 | 0.127 | mad | ||||||||||
M | 4.3 | 0.196 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | var |
6.0 | 0.185 | mad | ||||||||||
N | 20.4 | 1.173 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | var |
26.5 | 1.133 | mad | ||||||||||
O | 7.0 | 0.410 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | var |
6.6 | 0.490 | mad | ||||||||||
T | 15.8 | 0.497 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | var |
15.9 | 0.487 | mad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krauter, N.; Stefani, F. Simultaneous Measurement of Flow Velocity and Electrical Conductivity of a Liquid Metal Using an Eddy Current Flow Meter in Combination with a Look-Up-Table Method. Sensors 2023, 23, 9018. https://doi.org/10.3390/s23229018
Krauter N, Stefani F. Simultaneous Measurement of Flow Velocity and Electrical Conductivity of a Liquid Metal Using an Eddy Current Flow Meter in Combination with a Look-Up-Table Method. Sensors. 2023; 23(22):9018. https://doi.org/10.3390/s23229018
Chicago/Turabian StyleKrauter, Nico, and Frank Stefani. 2023. "Simultaneous Measurement of Flow Velocity and Electrical Conductivity of a Liquid Metal Using an Eddy Current Flow Meter in Combination with a Look-Up-Table Method" Sensors 23, no. 22: 9018. https://doi.org/10.3390/s23229018
APA StyleKrauter, N., & Stefani, F. (2023). Simultaneous Measurement of Flow Velocity and Electrical Conductivity of a Liquid Metal Using an Eddy Current Flow Meter in Combination with a Look-Up-Table Method. Sensors, 23(22), 9018. https://doi.org/10.3390/s23229018