Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing
<p>Consumer neurofeedback devices and their opportunities for at-home care, biofeedback training, mental wellbeing regulation, and future virtual reality (VR).</p> "> Figure 2
<p>Illustration of a real-time biofeedback system. The image captures a female participant outfitted with an EEG head cap. Visible on the display are the dynamic brainwave patterns. These patterns are processed in real-time, with key oscillatory metrics extracted and fed into a control system. The control subsequently modulates audio–visual feedback being presented to the participant, establishing an interactive biofeedback loop.</p> "> Figure 3
<p>(<b>A</b>) A detailed schematic representation of electrode placements across the scalp, highlighting standardized locations. This section delineates common configuration points that are essential for ensuring consistent and comparable data across research and clinical studies. (<b>B</b>) An informative chart elucidating various EEG frequency bands—delta, theta, alpha, beta, and gamma—and their associated cognitive and physiological activities. This component serves to emphasize the distinct brain activities and states associated with each frequency range.</p> "> Figure 4
<p>Conceptual diagram of an EEG neurofeedback system. Electrodes placed on the scalp capture neural activity, which is amplified and filtered. These analog signals are converted to digital by an analog-to-digital converter, processed by a microcontroller, and then relayed back to a smartphone for real-time feedback. The design illustrates the closed-loop nature of contemporary EEG feedback systems.</p> "> Figure 5
<p>Conceptual diagram of an fNIRS neurofeedback system. Optodes positioned on the scalp emit and detect near-infrared light to measure cerebral blood flow changes. The acquired data are processed and digitized, then sent to a microcontroller, which in turn relays information back to a smartphone for real-time feedback. This representation underscores the closed-loop design of modern fNIRS feedback systems.</p> ">
Abstract
:1. Introduction
Purpose
2. Wearable Neurofeedback Technologies
2.1. EEG Consumer-Grade Devices
2.2. fNIRS Consumer-Grade Devices
2.3. Data Acquisation
2.4. Signal Pre-Processing
3. Neurofeedback Pattern Recognition
3.1. Signal Processing
3.2. ML/AI Classification
4. Software Applications
5. Mental Health and Wellbeing
6. Discussion and Conclusions
6.1. Challenges
6.2. Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowlis, D.P.; Kamiya, J. The Control of Electroencephalographic Alpha Rhythms through Auditory Feedback and The Associated Mental Activity. Psychophysiology 1970, 6, 476–484. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Neeman, R.; Doniger, G.M. Preliminary Real-World Evidence Supporting the Efficacy of a Remote Neurofeedback System in Improving Mental Health: Retrospective Single-Group Pretest-Posttest Study. JMIR Form. Res. 2022, 6, e35636. [Google Scholar] [CrossRef]
- Quevedo, K.; Liu, G.; Teoh, J.Y.; Ghosh, S.; Zeffiro, T.; Ahrweiler, N.; Zhang, N.; Wedan, R.; Oh, S.; Guercio, G.; et al. Neurofeedback and neuroplasticity of visual self-processing in depressed and healthy adolescents: A preliminary study. Dev. Cogn. Neurosci. 2019, 40, 100707. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.C. Neurofeedback treatment of depression and anxiety. J. Adult. Dev. 2005, 12, 131–137. [Google Scholar] [CrossRef]
- Pandey, P.; Gupta, P.; Chaudhary, S.; Miyapuram, K.P.; Lomas, D. Real-time Sensing and NeuroFeedback for Practicing Meditation Using simultaneous EEG and Eye Tracking. In Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, 1–3 July 2022. [Google Scholar] [CrossRef]
- Chen, C.; Chang, C.L.; Chang, M.H.; Ko, L.W. Atypical functional connectivity during rest and task-related dynamic alteration in young children with attention deficit hyperactivity disorder: An analysis using the phase-locking value. Psychiatry Clin. Neurosci. 2022, 76, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Xiang, Y.; Zhao, J.; Qian, Y.; Li, F. Exploration of Brain-Computer Interaction for Supporting Children’s Attention Training: A Multimodal Design Based on Attention Network and Gamification Design. Int. J. Environ. Res. Public Health 2022, 19, 15046. [Google Scholar] [CrossRef] [PubMed]
- Luján, M.Á.; Jimeno, M.V.; Sotos, J.M.; Ricarte, J.J.; Borja, A.L. A Survey on EEG Signal Processing Techniques and Machine Learning: Applications to the Neurofeedback of Autobiographical Memory Deficits in Schizophrenia. Electronics 2021, 10, 3037. [Google Scholar] [CrossRef]
- Lum, J.A.G.; Clark, G.M.; Bigelow, F.J.; Enticott, P.G. Resting state electroencephalography (EEG) correlates with children’s language skills: Evidence from sentence repetition. Brain. Lang. 2022, 230, 105137. [Google Scholar] [CrossRef] [PubMed]
- Moontaha, S.; Schumann, F.E.F.; Arnrich, B. Online Learning for Wearable EEG-Based Emotion Classification. Sensors 2023, 23, 2387. [Google Scholar] [CrossRef]
- Sarma, P.; Barma, S. Emotion Recognition by Discriminating EEG Segments with High Affective Content from Automatically Selected Relevant Channels. IEEE Trans. Instrum. Meas. 2022, 71, 4000812. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhang, P.W.; Mao, Z.J.; Huang, Y.F.; Jiang, D.M.; Zhang, Y.N. Accurate EEG-Based Emotion Recognition on Combined Features Using Deep Convolutional Neural Networks. IEEE Access 2019, 7, 44317–44328. [Google Scholar] [CrossRef]
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer Grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2020, 20, 3996–4024. [Google Scholar] [CrossRef]
- Xie, Z.; Pan, J.; Li, S.; Ren, J.; Qian, S.; Ye, Y.; Bao, W. Musical Emotions Recognition Using Entropy Features and Channel Optimization Based on EEG. Entropy 2022, 24, 1735. [Google Scholar] [CrossRef]
- Gevins, A.; Smith, M.E.; McEvoy, L.K.; Leong, H.; Le, J. Electroencephalographic imaging of higher brain function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Marzbani, H.; Marateb, H.R.; Mansourian, M. Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic Clin. Neurosci. 2016, 7, 143. [Google Scholar] [CrossRef]
- Ratti, E.; Waninger, S.; Berka, C.; Ruffini, G.; Verma, A. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front. Hum. Neurosci. 2017, 11, 398. [Google Scholar] [CrossRef]
- Alvi, M.; Siuly, S.; Wang, H. Neurological abnormality detection from electroencephalography data: A review. Artif. Intell. Rev. 2022, 55, 2275–2312. [Google Scholar] [CrossRef]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2019, 12, 423390. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Sinha, V.K. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.A.; Barnett, J.E. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. In Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice; Oxford University Press: New York, NY, USA, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Scrivener, C.L.; Reader, A.T. Variability of EEG electrode positions and their underlying brain regions: Visualizing gel artifacts from a simultaneous EEG-fMRI dataset. Brain Behav. 2022, 12, e2476. [Google Scholar] [CrossRef]
- Klem, G.; Lüders, H.; Jasper, H.; Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [Google Scholar] [PubMed]
- Giacometti, P.; Perdue, K.L.; Diamond, S.G. Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain. J. Neurosci. Methods 2014, 229, 84–96. [Google Scholar] [CrossRef]
- Hill, N.J.; Gupta, D.; Brunner, P.; Gunduz, A.; Adamo, M.A.; Ritaccio, A.; Schalk, G. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. J. Vis. Exp. 2012, 26, 3993. [Google Scholar] [CrossRef]
- Peterson, V.; Galván, C.; Hernández, H.; Spies, R. A feasibility study of a complete low-cost consumer-grade brain-computer interface system. Heliyon 2020, 6, 3425. [Google Scholar] [CrossRef]
- Domingos, C.; Marôco, J.L.; Miranda, M.; Silva, C.; Melo, X.; Borrego, C. Repeatability of Brain Activity as Measured by a 32-Channel EEG System during Resistance Exercise in Healthy Young Adults. Int. J. Environ. Res. Public Health 2023, 20, 1992. [Google Scholar] [CrossRef] [PubMed]
- Saikia, M.J.; Besio, W.G.; Mankodiya, K. WearLight: Toward a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 91–102. [Google Scholar] [CrossRef]
- Tsow, F.; Kumar, A.; Hosseini, S.H.; Bowden, A. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband. HardwareX 2021, 10, e00204. [Google Scholar] [CrossRef]
- Hong, F.W.; Chia, K.S. A review on recent near infrared spectroscopic measurement setups and their challenges. Measurement 2021, 171, 108732. [Google Scholar] [CrossRef]
- Logothetis, N.K.; Pauls, J.; Augath, M.; Trinath, T.; Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412, 150–157. [Google Scholar] [CrossRef]
- Rahman, M.A.; Siddik, A.B.; Ghosh, T.K.; Khanam, F.; Ahmad, M. A Narrative Review on Clinical Applications of fNIRS. J. Digit. Imaging 2020, 33, 1167–1184. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; Elwell, C.E.; Ferrari, M.; Taga, G. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. Neuroimage 2014, 85, 1–5. [Google Scholar] [CrossRef]
- Li, M.; Gong, A.; Nan, W.; Xu, B.; Ding, P.; Fu, Y. Neurofeedback technology based on functional near infrared spectroscopy imaging and its applications. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2022, 39, 1041–1049. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Stangl, M.; Maoz, S.L.; Suthana, N. Mobile cognition: Imaging the human brain in the ‘real world’. Nat. Rev. Neurosci. 2023, 24, 347–362. [Google Scholar] [CrossRef]
- Saikia, M.J. K-means Clustering Machine Learning Approach Reveals Groups of Homogeneous Individuals with Unique Brain Activation, Task, and Performance Dynamics using fNIRS. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- Saikia, M.J. Internet of things-based functional near-infrared spectroscopy headband for mental workload assessment. In Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics; SPIE: Bellingham, DC, USA, 2021; Volume 11629, pp. 149–156. [Google Scholar] [CrossRef]
- Huang, X.; Tang, J.; Luo, J.; Shu, F.; Chen, C.; Chen, W. A Wearable Functional Near-Infrared Spectroscopy (fNIRS) System for Obstructive Sleep Apnea Assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Miyai, I.; Hattori, N.; Hatakenaka, M.; Yagura, H.; Kawano, T.; Okibayashi, M.; Danjo, N.; Ishikawa, A.; Inoue, Y.; et al. Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation. PLoS ONE 2012, 7, e32234. [Google Scholar] [CrossRef]
- Torricelli, A.; Contini, D.; Pifferi, A.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014, 85 Pt 1, 28–50. [Google Scholar] [CrossRef]
- Doherty, E.J.; Spencer, C.A.; Burnison, J.; Čeko, M.; Chin, J.; Eloy, L.; Haring, K.; Kim, P.; Pittman, D.; Powers, S.; et al. Interdisciplinary views of fNIRS: Current advancements, equity challenges, and an agenda for future needs of a diverse fNIRS research community. Front. Integr. Neurosci. 2023, 17, 1059679. [Google Scholar] [CrossRef]
- Irani, F.; Platek, S.M.; Bunce, S.; Ruocco, A.C.; Chute, D. Functional near infrared spectroscopy (fNIRS): An emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 2007, 21, 9–37. [Google Scholar] [CrossRef]
- Maskeliunas, R.; Damasevicius, R.; Martisius, I.; Vasiljevas, M. Consumer-grade EEG devices: Are they usable for control tasks? PeerJ 2016, 2016, e1746. [Google Scholar] [CrossRef]
- Puce, A.; Hämäläinen, M.S. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies. Brain Sci. 2017, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.; Strüber, D.; Helfrich, R.F.; Engel, A.K. EEG oscillations: From correlation to causality. Int. J. Psychophysiol. 2016, 103, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Radüntz, T. Signal quality evaluation of emerging EEG devices. Front. Physiol. 2018, 9, 98. [Google Scholar] [CrossRef]
- Saikia, M.J.; Besio, W.G.; Mankodiya, K. The Validation of a Portable Functional NIRS System for Assessing Mental Workload. Sensors 2021, 21, 3810. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Levkowitz, H. A New Index for Measuring Inconsistencies in Independent Component Analysis Using Multi-sensor Data. Coop. Des. Vis. Eng. 2019, 11792, 98. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, M. A review of electroencephalogram signal processing methods for brain-controlled robots. Cogn. Robot. 2021, 1, 111–124. [Google Scholar] [CrossRef]
- Adeli, H.; Zhou, Z.; Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Nayak, C.S.; Anilkumar, A.C. EEG Normal Waveforms. StatPearls 2023, 1–6. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539805/ (accessed on 25 June 2023).
- Han, C.X.; Wang, J.; Yi, G.S.; Che, Y.Q. Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn. Neurodyn. 2013, 7, 351. [Google Scholar] [CrossRef]
- Zoefel, B.; Huster, R.J.; Herrmann, C.S. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 2011, 54, 1427–1431. [Google Scholar] [CrossRef]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Gardner, W.A. A unifying view of coherence in signal processing. Signal Process. 1992, 29, 113–140. [Google Scholar] [CrossRef]
- Razavipour, F.; Sameni, R. A study of event related potential frequency domain coherency using multichannel electroencephalogram subspace analysis. J. Neurosci. Methods 2015, 249, 22–28. [Google Scholar] [CrossRef]
- Helfrich, R.F.; Knight, R.T. Cognitive neurophysiology: Event-related potentials. Handb. Clin. Neurol. 2019, 160, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef] [PubMed]
- Picton, T.W.; Bentin, S.; Berg, P.; Donchin, E.; Hillyard, S.A.; Johnson, R.; Miller, G.A.; Ritter, W.; Ruchkin, D.S.; Rugg, M.D.; et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 2000, 37, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Saeidi, M.; Karwowski, W.; Farahani, F.V.; Fiok, K.; Taiar, R.; Hancock, P.A.; Al-Juaid, A. Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sci. 2021, 11, 1525. [Google Scholar] [CrossRef]
- Anand, V.; Sreeja, S.R.; Samanta, D. An Automated Approach for Task Evaluation Using EEG Signals. 2019. Available online: http://arxiv.org/abs/1911.02966 (accessed on 6 April 2023).
- Cukic, M.; Pokrajac, D.; Stokic, M.; Simic, S.; Radivojevic, V.; Ljubisavljevic, M. EEG Machine Learning with Higuchi Fractal Dimension and Sample Entropy as Features for Successful Detection of Depression. 2018. Available online: http://arxiv.org/abs/1803.05985 (accessed on 6 April 2023).
- Hamad, A.; Hassanien, A.E.; Fahmy, A.A.; Houssein, E.H. A Hybrid Automated Detection of Epileptic Seizures in EEG Based on Wavelet and Machine Learning Techniques. 2018. Available online: http://arxiv.org/abs/1807.10723 (accessed on 6 April 2023).
- Rivera, M.J.; Teruel, M.A.; Maté, A.; Trujillo, J. Diagnosis and prognosis of mental disorders by means of EEG and deep learning: A systematic mapping study. Artif. Intell. Rev. 2022, 55, 1209–1251. [Google Scholar] [CrossRef]
- Neuper, C.; Pfurtscheller, G. Neurofeedback Training for BCI Control. In Frontiers Collection; Springer: Berlin/Heidelberg, Germany, 2009; vol. Part F952, pp. 65–78. [Google Scholar] [CrossRef]
- Jebelli, H.; Hwang, S.; Lee, S. EEG Signal-Processing Framework to Obtain High-Quality Brain Waves from an Off-the-Shelf Wearable EEG Device. J. Comput. Civ. Eng. 2018, 32, 04017070. [Google Scholar] [CrossRef]
- Ma, T.; Wang, S.; Xia, Y.; Zhu, X.; Evans, J.; Sun, Y.; He, S. CNN-based classification of fNIRS signals in motor imagery BCI system. J. Neural. Eng. 2021, 18, 056019. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, A.; Jain, P.; Rani, A.; Yadav, J. Classification of human emotions from EEG signals using SVM and LDA Classifiers. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015; pp. 180–185. [Google Scholar] [CrossRef]
- Krigolson, O.E.; Hammerstrom, M.R.; Abimbola, W.; Trska, R.; Wright, B.W.; Hecker, K.G.; Binsted, G. Using Muse: Rapid Mobile Assessment of Brain Performance. Front. Neurosci. 2021, 15, 634147. [Google Scholar] [CrossRef] [PubMed]
- Krigolson, E.; Williams, C.C.; Norton, A.; Hassall, C.D.; Colino, F.L. Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. Front. Neurosci. 2017, 11, 243179. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cifo, M.Á.; Montero, F.; López, M.T.; Hramov, A.E.; Fukuyama, H.; Jin, J. MuseStudio: Brain Activity Data Management Library for Low-Cost EEG Devices. Appl. Sci. 2021, 11, 7644. [Google Scholar] [CrossRef]
- Rodrigo-Yanguas, M.; Martín-Moratinos, M.; González-Tardón, C.; Sanchez-Sanchez, F.; Royuela, A.; Bella-Fernández, M.; Blasco-Fontecilla, H. Effectiveness of a Personalized, Chess-Based Training Serious Video Game in the Treatment of Adolescents and Young Adults With Attention-Deficit/Hyperactivity Disorder: Randomized Controlled Trial. JMIR Serious Games 2023, 11, e39874. [Google Scholar] [CrossRef]
- Saikia, M.J.; Brunyéa, T.T. K-means clustering for unsupervised participant grouping from fNIRS brain signal in working memory task. In Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics; SPIE: Bellingham, DC, USA, 2021; Volume 11629. [Google Scholar] [CrossRef]
- Fuchs, T.; Birbaumer, N.; Lutzenberger, W.; Gruzelier, J.H.; Kaiser, J. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Appl. Psychophysiol. Biofeedback 2003, 28, 1–12. [Google Scholar] [CrossRef]
- Schönenberg, M.; Wiedemann, E.; Schneidt, A.; Scheeff, J.; Logemann, A.; Keune, P.M.; Hautzinger, M. Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: A triple-blind, randomised, controlled trial. Lancet Psychiatry 2017, 4, 673–684. [Google Scholar] [CrossRef]
- López-Pinar, C.; Martínez-Sanchís, S.; Carbonell-Vayá, E.; Sánchez-Meca, J.; Fenollar-Cortés, J. Efficacy of Nonpharmacological Treatments on Comorbid Internalizing Symptoms of Adults With Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. J. Atten. Disord. 2020, 24, 456–478. [Google Scholar] [CrossRef]
- Geladé, K.; Janssen, T.W.P.; Bink, M.; Van Mourik, R.; Maras, A.; Oosterlaan, J. Behavioral effects of neurofeedback compared to stimulants and physical activity in attention-deficit/hyperactivity disorder: A randomized controlled trial. J. Clin. Psychiatry 2016, 77, e1270–e1277. [Google Scholar] [CrossRef]
- Antle, N.; McLaren, E.S.; Fielder, H.; Johnson, N. Evaluating the impact of a mobile neurofeedback app for young children at school and home. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Escolano, C.; Navarro-Gil, M.; Garcia-Campayo, J.; Congedo, M.; Minguez, J. The Effects of Individual Upper Alpha Neurofeedback in ADHD: An Open-Label Pilot Study. Appl. Psychophysiol. Biofeedback 2014, 39, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Perreau-Linck, E.; Lessard, N.; Lévesque, J.; Beauregard, M. Effects of Neurofeedback Training on Inhibitory Capacities in ADHD Children: A Single-Blind, Randomized, Placebo-Controlled Study. J. Neurother. 2010, 14, 229–242. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Faubert, J.; Sidebottom, L. Perceptual-Cognitive Training of Athletes. J. Clin. Sport. Psychol. 2012, 6, 85–102. [Google Scholar] [CrossRef]
- Pappas, M.A.; Drigas, A.S. Computerized Training for Neuroplasticity and Cognitive Improvement. Int. J. Eng. Pedagog. 2019, 9, 50–62. [Google Scholar] [CrossRef]
- Wynn, J.K.; Roach, B.J.; McCleery, A.; Marder, S.R.; Mathalon, D.H.; Green, M.F. Evaluating visual neuroplasticity with EEG in schizophrenia outpatients. Schizophr. Res. 2019, 21, 40–46. [Google Scholar] [CrossRef]
- Ekandem, J.I.; Davis, T.A.; Alvarez, I.; James, M.T.; Gilbert, J.E. Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics 2012, 55, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Bilkstein, P. βwave: An EEG-based self-awareness curriculum. In Proceedings of the 2020 ACM Interaction Design and Children Conference: Extended Abstracts, London, UK, 21–24 June 2020. pp. 264–267. [CrossRef]
- Micoulaud-Franchi, J.A.; McGonigal, A.; Lopez, R.; Daudet, C.; Kotwas, I.; Bartolomei, F. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Neurophysiol. Clin. 2015, 45, 423–433. [Google Scholar] [CrossRef] [PubMed]
- PIVIK, R.T.; BROUGHTON, R.J.; COPPOLA, R.; DAVIDSON, R.J.; FOX, N.; NUWER, M.R. Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology 1993, 30, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Pegg, E.J.; Taylor, J.R.; Mohanraj, R. Spectral power of interictal EEG in the diagnosis and prognosis of idiopathic generalized epilepsies. Epilepsy Behav. 2020, 112, 107427. [Google Scholar] [CrossRef]
- Masterpasqua, F.; Healey, K.N. Neurofeedback in Psychological Practice. Prof. Psychol. Res. Pr. 2003, 34, 652–656. [Google Scholar] [CrossRef]
- Patil, A.U.; Lin, C.; Lee, S.H.; Huang, H.W.; Wu, S.C.; Madathil, D.; Huang, C.M. Review of EEG-based neurofeedback as a therapeutic intervention to treat depression. Psychiatry Res. Neuroimaging 2023, 329, 111591. [Google Scholar] [CrossRef] [PubMed]
- Abdian, H.; Rezaei, M.; Eskandari, Z.; Ramezani, S.; Pirzeh, R.; Dadashi, M. The Effect of Quantitative Electroencephalography-Based Neurofeedback Therapy on Anxiety, Depression, and Emotion Regulation in People with Generalized Anxiety Disorder. Basic Clin. Neurosci. 2021, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Beatty, J.; Greenberg, A.; Deibler, W.P.; O’Hanlon, J.F. Operant control of occipital theta rhythm affects performance in a radar monitoring task. Science 1974, 183, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Vernon, D.J. Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Appl. Psychophysiol. Biofeedback 2005, 30, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.; Egner, T.; Vernon, D. Chapter 27 Validating the efficacy of neurofeedback for optimising performance. Prog. Brain Res. 2006, 159, 421–431. [Google Scholar] [CrossRef]
- Saikia, M.J.; Kuanar, S.; Borthakur, D.; Vinti, M.; Tendhar, T. A machine learning approach to classify working memory load from optical neuroimaging data. In Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics; SPIE: Bellingham, DC, USA, 2021; Volume 11629. [Google Scholar] [CrossRef]
- Arns, M.; Heinrich, H.; Strehl, U. Evaluation of neurofeedback in ADHD: The long and winding road. Biol. Psychol. 2014, 95, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Shereena, E.A.; Gupta, R.K.; Bennett, C.N.; Sagar, K.J.V.; Rajeswaran, J. EEG Neurofeedback Training in Children With Attention Deficit/Hyperactivity Disorder: A Cognitive and Behavioral Outcome Study. Clin. EEG Neurosci. 2019, 50, 242–255. [Google Scholar] [CrossRef]
- Arns, M.; De Ridder, S.; Strehl, U.; Breteler, M.; Coenen, A. Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clin. EEG Neurosci. 2009, 40, 180–189. [Google Scholar] [CrossRef]
- Riesco-Matías, P.; Yela-Bernabé, J.R.; Crego, A.; Sánchez-Zaballos, E. What Do Meta-Analyses Have to Say About the Efficacy of Neurofeedback Applied to Children With ADHD? Review of Previous Meta-Analyses and a New Meta-Analysis. J. Atten. Disord. 2021, 25, 473–485. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.A.; Geoffroy, P.A.; Fond, G.; Lopez, R.; Bioulac, S.; Philip, P. EEG neurofeedback treatments in children with ADHD: An updated meta-analysis of randomized controlled trials. Front. Hum. Neurosci. 2014, 8, 906. [Google Scholar] [CrossRef]
- Bussalb, A.; Congedo, M.; Barthélemy, Q.; Ojeda, D.; Acquaviva, E.; Delorme, R.; Mayaud, L. Clinical and experimental factors influencing the efficacy of neurofeedback in ADHD: A meta-analysis. Front. Psychiatry 2019, 10, 35. [Google Scholar] [CrossRef]
- Ros, T.; Baars, B.J.; Lanius, R.A.; Vuilleumier, P. Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Front. Hum. Neurosci. 2014, 8, 1008. [Google Scholar] [CrossRef]
- Noreika, V.; Georgieva, S.; Wass, S.; Leong, V. 14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants. Infant. Behav. Dev. 2020, 58, 101393. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.A.; Cuevas, K. Using EEG to Study Cognitive Development: Issues and Practices. J. Cogn. Dev. 2012, 13, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Blume, F.; Hudak, J.; Dresler, T.; Ehlis, A.C.; Kühnhausen, J.; Renner, T.J.; Gawrilow, C. NIRS-based neurofeedback training in a virtual reality classroom for children with attention-deficit/hyperactivity disorder: Study protocol for a randomized controlled trial. Trials 2017, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ayuso, D.; Toledano-González, A.; Rodríguez-Martínez, M.D.C.; Arroyo-Castillo, P.; Triviño-Juárez, J.M.; González, P.; Ariza-Vega, P.; Del Pino González, A.; Segura-Fragoso, A. Effectiveness of Virtual Reality-Based Interventions for Children and Adolescents with ADHD: A Systematic Review and Meta-Analysis. Children 2021, 8, 70. [Google Scholar] [CrossRef]
- Kothgassner, D.; Goreis, A.; Kafka, J.X.; Van Eickels, R.L.; Plener, P.L.; Felnhofer, A. Virtual reality exposure therapy for posttraumatic stress disorder (PTSD): A meta-analysis. Eur. J. Psychotraumatol. 2019, 10, 1654782. [Google Scholar] [CrossRef]
Manufacturer/Model | Channels | Reference Channels | Configuration Type | Additional Sensors | Audience |
---|---|---|---|---|---|
BrainRobotics BrainLink Lite | 4 | Yes | Headband | Accelerometer, gyroscope | Consumer industry, mental wellbeing |
EMOTIV EPOC FLEX | >32 | Yes | Cap | Gyroscope, accelerometer, magnetometer, PPG, temperature | Research and development, university, consumer industry |
EMOTIV INSIGHT | 5 | Yes | Headband | Gyroscope, accelerometer, magnetometer, temperature | Consumer industry |
EMOTIV EPOC+ | 14 | Yes | Headband | Gyroscope, accelerometer, magnetometer, temperature | Research and development, university, consumer industry |
INTERAXON Muse 2 | 4 | Yes | Headband | PPG, accelerometer, gyroscope, magnetometer, temperature | Meditation coaches and consumer industry |
MACROTELLECT Brainlink Pro | 5 | No | Headband | Accelerometer, gyroscope, magnetometer, temperature | Advanced education health and mental wellbeing |
MYNDPLAY Myndband | 1 | Yes | Headband | Accelerometer, gyroscope, magnetometer, temperature | Advertising, virtual reality, research and development |
NEEURO Senzeband 2 | 4 | Yes | Headband | Accelerometer, gyroscope, temperature | Performance training |
NeuroSky MindWave Mobile 2 | 1 | Yes | Headband | Accelerometer, gyroscope, temperature | Beginner EEG developers |
FocusCalm | 5 | Yes | Headband | Accelerometer, gyroscope, temperature | Performance training |
EMOTIV EPOC X | 14 | Yes | Headband | Accelerometer, gyroscope, magnetometer, temperature | Research and development, university, consumer industry |
Interaxon Muse S | 5 | Yes | Headband | Accelerometer, gyroscope, PPG, breath, temperature | Beginner EEG developers |
OpenBCI EEG Kit | 8 | Yes | Headband | -- | Research and development, instructors, students |
Manufacturer/Model | Channels | Short Separation Channels | Configuration Type | Additional Sensors | Audience |
---|---|---|---|---|---|
NIRx NIRSport2 | 8–80 | Yes | Cap | Pulse oximetry, heart-rate variability, oxygen saturation, respiration, temperature, galvanic skin response | Research and development, clinical use |
Artinis Brite MKIII | <27 | Yes | Cap | Gyroscope, accelerometer | Research and development, university, consumer industry |
Artinis PortaLite MKII | 7 | Yes | Headband | Gyroscope, accelerometer | Research and development, university, consumer industry |
Mendi | 2 | No | Headband | -- | Meditation coaches and consumer industry |
Obelab NIRSIT | 48 | No | Headband | Gyroscope, accelerometer | Research and development, university, consumer industry |
Obelab NIRSIT Lite | 15–19 | No | Headband | Accelerometer, gyroscope, compass | Research and development, university, consumer industry |
Manufacturer/Model | Device Type | Application |
---|---|---|
EMOTIV EPOC FLEX | EEG | EmotivPro |
EMOTIV INSIGHT | EEG | “Emotiv BCI, MyEmotiv, BrainViz, Mental Commands” |
EMOTIV EPOC+ | EEG | EmotivBCI, MyEmotiv |
INTERAXON Muse 2 | EEG | Muse Direct |
MACROTELLECT Brainlink Pro | EEG | Macrotellect software, not compatible with Neurosky |
“MYNDPLAY Myndband” | EEG | Misc. third party software |
“NEEURO Senzeband 2” | EEG | Mindviewer |
“NeuroSky MindWave Mobile 2” | EEG | Visualizer, third party software |
FocusCalm | EEG | FocusCalm |
EMOTIV EPOC X | EEG | EmotivBCI, SDK Cortex |
Interaxon Muse S | EEG | Muse Direct |
BrainRobotics BrainLink Lite | EEG | Macrotellect software |
Mendi | fNIRS | Mendi.io |
NIRx | fNIRS | Turbo-Satori, Aurora fNIRS |
Artinis Medical System | fNIRS | OxySoft |
Obelab | fNIRS | Obelab Connect, third party software |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flanagan, K.; Saikia, M.J. Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors 2023, 23, 8482. https://doi.org/10.3390/s23208482
Flanagan K, Saikia MJ. Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors. 2023; 23(20):8482. https://doi.org/10.3390/s23208482
Chicago/Turabian StyleFlanagan, Kira, and Manob Jyoti Saikia. 2023. "Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing" Sensors 23, no. 20: 8482. https://doi.org/10.3390/s23208482
APA StyleFlanagan, K., & Saikia, M. J. (2023). Consumer-Grade Electroencephalogram and Functional Near-Infrared Spectroscopy Neurofeedback Technologies for Mental Health and Wellbeing. Sensors, 23(20), 8482. https://doi.org/10.3390/s23208482