A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm
<p>Distribution of classes within the balanced dataset.</p> "> Figure 2
<p>Sample images from the SVIA, HuSHem, and SMIDS datasets.</p> "> Figure 3
<p>Experimental flow.</p> "> Figure 4
<p>Augmentation on image data.</p> "> Figure 5
<p>Architecture of Swin-T Transformer.</p> "> Figure 6
<p>General architecture of MobileNetV3 Transformer.</p> "> Figure 7
<p>Architecture of SwinMobile.</p> "> Figure 8
<p>Architecture of SwinMobile-AE.</p> "> Figure 9
<p>Cross-validation data split.</p> "> Figure 10
<p>Accuracy performance range of proposed models on SVIA.</p> "> Figure 11
<p>Accuracy results for benchmark models on SVIA.</p> ">
Abstract
:1. Introduction
1.1. Main Problem
1.2. Specific Problem
1.3. Previous Studies
1.4. Proposed Method
2. Materials and Methods
2.1. Dataset Information
2.2. Model Setup
2.3. Data Pre-Processing
2.4. Swin Transformer
2.5. MobileNetV3
2.6. AutoEncoder
2.7. Proposed Models
2.7.1. SwinMobile
2.7.2. SwinMobile-AE
2.7.3. SwinMobile-AE-Mini
3. Performance Evaluation
3.1. Model Training
3.2. Evaluation Scheme
3.3. Evaluation Metrics
4. Results
4.1. Comparison Parameters
4.2. Overall Performance of Proposed Models
4.3. SVIA Dataset Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivell, R.; Anand-Ivell, R. The Physiology of Reproduction—Quo Vadis? Front. Physiol. 2021, 12, 650550. [Google Scholar] [CrossRef]
- Turp, A.B.; Guler, I.; Bozkurt, N.; Uysal, A.; Yilmaz, B.; Demir, M.; Karabacak, O. Infertility and Surrogacy First Mentioned on a 4000-Year-Old Assyrian Clay Tablet of Marriage Contract in Turkey. Gynecol. Endocrinol. 2018, 34, 25–27. [Google Scholar] [CrossRef]
- Gnoth, C.; Godehardt, E.; Frank-Herrmann, P.; Friol, K.; Tigges, J.; Freundl, G. Definition and Prevalence of Subfertility and Infertility. Hum. Reprod. 2005, 20, 1144–1147. [Google Scholar] [CrossRef] [Green Version]
- Emokpae, M.A.; Brown, S.I. Effects of Lifestyle Factors on Fertility: Practical Recommendations for Modification. Reprod. Fertil. 2021, 2, R13–R26. [Google Scholar] [CrossRef] [PubMed]
- Hanevik, H.I.; Hessen, D.O.; Sunde, A.; Breivik, J. Can IVF Influence Human Evolution?—Table I. Hum. Reprod. 2016, 31, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Eftekhar, M.; Mohammadian, F.; Yousefnejad, F.; Molaei, B.; Aflatoonian, A. Comparison of Conventional IVF versus ICSI in Non-Male Factor, Normoresponder Patients. Int. J. Reprod. BioMed. 2012, 10, 131–136. [Google Scholar] [CrossRef]
- Pedrosa, M.L.; Furtado, M.H.; Ferreira, M.C.F.; Carneiro, M.M. Sperm Selection in IVF: The Long and Winding Road from Bench to Bedside. JBRA Assist. Reprod. 2020, 24, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.P.; Waberski, D. Computer-Assisted Sperm Analysis (CASA): Capabilities and Potential Developments. Theriogenology 2014, 81, 5–17.e3. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Fan, S.; Wu, J.; Liu, C. Principles, Developments and Applications of Computer Vision for External Quality Inspection of Fruits and Vegetables: A Review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Lu, J.C.; Huang, Y.F.; Lü, N.Q. Computer-Aided Sperm Analysis: Past, Present and Future. Andrologia 2014, 46, 329–338. [Google Scholar] [CrossRef]
- Mortimer, S.; van der Horst, G.; Mortimer, D. The Future of Computer-Aided Sperm Analysis. Asian J. Androl. 2015, 17, 545–553. [Google Scholar] [CrossRef]
- Chen, A.; Li, C.; Zou, S.; Rahaman, M.M.; Yao, Y.; Chen, H.; Yang, H.; Zhao, P.; Hu, W.; Liu, W.; et al. SVIA Dataset: A New Dataset of Microscopic Videos and Images for Computer-Aided Sperm Analysis. Biocybern. Biomed. Eng. 2022, 42, 204–214. [Google Scholar] [CrossRef]
- Shaker, F.; Monadjemi, S.A.; Alirezaie, J.; Naghsh-Nilchi, A.R. A Dictionary Learning Approach for Human Sperm Heads Classification. Comput. Biol. Med. 2017, 91, 181–190. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Wu, T.-L.; Huang, H.-R.; Li, C.-J.; Fu, H.-T.; Soong, Y.-K.; Lee, M.-Y.; Yao, D.-J. Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel. SLAS Technol. 2014, 19, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Javadi, S.; Mirroshandel, S.A. A Novel Deep Learning Method for Automatic Assessment of Human Sperm Images. Comput. Biol. Med. 2019, 109, 182–194. [Google Scholar] [CrossRef]
- Ghasemian, F.; Mirroshandel, S.A.; Monji-Azad, S.; Azarnia, M.; Zahiri, Z. An Efficient Method for Automatic Morphological Abnormality Detection from Human Sperm Images. Comput. Methods Programs Biomed. 2015, 122, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Spencer, L.; Fernando, J.; Akbaridoust, F.; Ackermann, K.; Nosrati, R. Ensembled Deep Learning for the Classification of Human Sperm Head Morphology. Adv. Intell. Syst. 2022, 4, 2200111. [Google Scholar] [CrossRef]
- Riordon, J.; McCallum, C.; Sinton, D. Deep Learning for the Classification of Human Sperm. Comput. Biol. Med. 2019, 111, 103342. [Google Scholar] [CrossRef]
- Iqbal, I.; Mustafa, G.; Ma, J. Deep Learning-Based Morphological Classification of Human Sperm Heads. Diagnostics 2020, 10, 325. [Google Scholar] [CrossRef]
- Chang, V.; Garcia, A.; Hitschfeld, N.; Härtel, S. Gold-Standard for Computer-Assisted Morphological Sperm Analysis. Comput. Biol. Med. 2017, 83, 143–150. [Google Scholar] [CrossRef]
- Ilhan, H.O.; Serbes, G. Sperm Morphology Analysis by Using the Fusion of Two-Stage Fine-Tuned Deep Networks. Biomed. Signal Process. Control 2022, 71, 103246. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 1314–1324. [Google Scholar]
- Group, M. MIaMIA-SVDS, SVIA dataset, 2021. [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Yoon, S.; Fuentes, A.; Park, D.S. A Comprehensive Survey of Image Augmentation Techniques for Deep Learning. Pattern Recognit. 2022, 137, 109347. [Google Scholar] [CrossRef]
- Tushar, A.K.; Ashiquzzaman, A.; Islam, M.R. Faster Convergence and Reduction of Overfitting in Numerical Hand Sign Recognition Using DCNN. In Proceedings of the 5th IEEE Region 10 Humanitarian Technology Conference 2017, R10-HTC 2017, Dhaka, Bangladesh, 21–23 December 2017; IEEE: New York, NY, USA, 2018; pp. 638–641. [Google Scholar] [CrossRef]
- Huang, X.; Khetan, A.; Cvitkovic, M.; Karnin, Z. TabTransformer: Tabular Data Modeling Using Contextual Embeddings. arXiv 2020, arXiv:2012.06678. [Google Scholar]
- Wang, Q.; Li, B.; Xiao, T.; Zhu, J.; Li, C.; Wong, D.F.; Chao, L.S. Learning Deep Transformer Models for Machine Translation. In Proceedings of the Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 1810–1822. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Matsoukas, C.; Haslum, J.F.; Sorkhei, M.; Söderberg, M.; Smith, K. What Makes Transfer Learning Work for Medical Images: Feature Reuse & Other Factors. arXiv 2022, arXiv:2203.01825. [Google Scholar] [CrossRef]
- Morrison, K.; Gilby, B.; Lipchak, C.; Mattioli, A.; Kovashka, A. Exploring Corruption Robustness: Inductive Biases in Vision Transformers and MLP-Mixers. arXiv 2021, arXiv:2106.13122. [Google Scholar] [CrossRef]
- Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-Attention with Relative Position Representations. In Proceedings of the NAACL HLT 2018—2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 2, pp. 464–468. [Google Scholar] [CrossRef]
- Liu, D.; Wei, S.; Guo, W.; Bao, Y.; Xiong, S.; Dai, L. Lattice Based Optimization of Bottleneck Feature Extractor with Linear Transformation. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014; pp. 5617–5621. [Google Scholar] [CrossRef]
- Zhou, X.; Lerch, A. Chord Detection Using Deep Learning. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), Málaga, Spain, 26–30 October 2015. [Google Scholar]
- Bai, L.; Jančovič, P.; Russell, M.; Weber, P. Analysis of a Low-Dimensional Bottleneck Neural Network Representation of Speech for Modelling Speech Dynamics. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, Dresden, Germany, 6–10 September 2015; pp. 583–587. [Google Scholar] [CrossRef]
- Kolchinsky, A.; Tracey, B.D.; Wolpert, D.H. Nonlinear Information Bottleneck. Entropy 2019, 21, 1181. [Google Scholar] [CrossRef] [Green Version]
- Sekanina, L. Neural Architecture Search and Hardware Accelerator Co-Search: A Survey. IEEE Access 2021, 9, 151337–151362. [Google Scholar] [CrossRef]
- Yang, T.J.; Howard, A.; Chen, B.; Zhang, X.; Go, A.; Sandler, M.; Sze, V.; Adam, H. NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: New York, NY, USA, 2018; Volume 11214, pp. 289–304. [Google Scholar] [CrossRef]
- Kunapuli, S.S.; Bhallamudi, P.C. A Review of Deep Learning Models for Medical Diagnosis. Mach. Learn. Big Data IoT Med. Inf. 2021, 389–404. [Google Scholar] [CrossRef]
- Ribeiro, A.; Matos, L.M.; Pereira, P.J.; Nunes, E.C.; Ferreira, A.L.; Cortez, P.; Pilastri, A. Deep Dense and Convolutional Autoencoders for Unsupervised Anomaly Detection in Machine Condition Sounds. arXiv 2020, arXiv:2006.10417. [Google Scholar] [CrossRef]
- Terziyan, V.; Malyk, D.; Golovianko, M.; Branytskyi, V. Hyper-Flexible Convolutional Neural Networks Based on Generalized Lehmer and Power Means. Neural Networks 2022, 155, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proceedings of the 32nd International Conference on Machine Learning, ICML Volume 1, 448–456. [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of Trends in Practice and Research for Deep Learning. arXiv 2018, arXiv:1811.03378. [Google Scholar] [CrossRef]
- Golik, P.; Doetsch, P.; Ney, H. Cross-Entropy vs. Squared Error Training: A Theoretical and Experimental Comparison. In Proceedings of the Interspeech 2013, Lyon, France, 25–29 August 2013; ISCA: Singapore, 2013; pp. 1756–1760. [Google Scholar]
- Bosman, A.S.; Engelbrecht, A.; Helbig, M. Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network Loss Functions. Neurocomputing 2020, 400, 113–136. [Google Scholar] [CrossRef] [Green Version]
- Kline, D.M.; Berardi, V.L. Revisiting Squared-Error and Cross-Entropy Functions for Training Neural Network Classifiers. Neural Comput. Appl. 2005, 14, 310–318. [Google Scholar] [CrossRef]
- Maher, M.; Kull, M. Instance-Based Label Smoothing For Better Calibrated Classification Networks. In Proceedings of the 20th IEEE International Conference on Machine Learning and Applications, ICMLA, Pasadena, CA, USA, 13–15 December 2021; pp. 746–753. [Google Scholar] [CrossRef]
- Mehta, S.; Rastegari, M. MobileViT: Light-Weight, General-Purpose, and Mobile-Friendly Vision Transformer. arXiv 2021, arXiv:2110.02178v2. [Google Scholar]
- Yoo, Y. Hyperparameter Optimization of Deep Neural Network Using Univariate Dynamic Encoding Algorithm for Searches. Knowl.-Based Syst. 2019, 178, 74–83. [Google Scholar] [CrossRef]
- Kamble, V.H.; Dale, M.P. Machine Learning Approach for Longitudinal Face Recognition of Children. In Machine Learning for Biometrics: Concepts, Algorithms and Applications; Academic Press: Oxford, UK, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Elsevier: Oxford, UK, 2019; Volume 1–3, pp. 542–545. [Google Scholar] [CrossRef]
- Belyadi, H.; Haghighat, A. Model Evaluation. In Machine Learning Guide for Oil and Gas Using Python; Gulf Professional Publishing: Houston, TX, USA, 2021; pp. 349–380. [Google Scholar] [CrossRef]
- Wieczorek, J.; Guerin, C.; McMahon, T. K-Fold Cross-Validation for Complex Sample Surveys. Stat 2022, 11, e454. [Google Scholar] [CrossRef]
- Wong, T.T.; Yeh, P.Y. Reliable Accuracy Estimates from K-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- Choi, J.G.; Ko, I.; Kim, J.; Jeon, Y.; Han, S. Machine Learning Framework for Multi-Level Classification of Company Revenue. IEEE Access 2021, 9, 96739–96750. [Google Scholar] [CrossRef]
- Seliya, N.; Khoshgoftaar, T.M.; van Hulse, J. Aggregating Performance Metrics for Classifier Evaluation. In Proceedings of the 2009 IEEE International Conference on Information Reuse and Integration, IRI 2009, Las Vegas, NV, USA, 10–12 August 2009; pp. 35–40. [Google Scholar] [CrossRef]
- Sweeney, C.; Ennis, E.; Mulvenna, M.; Bond, R.; O’neill, S. How Machine Learning Classification Accuracy Changes in a Happiness Dataset with Different Demographic Groups. Computers 2022, 11, 83. [Google Scholar] [CrossRef]
- Lin, H.; Xue, Y.; Chen, K.; Zhong, S.; Chen, L. Acute Coronary Syndrome Risk Prediction Based on Gradient Boosted Tree Feature Selection and Recursive Feature Elimination: A Dataset-Specific Modeling Study. PLoS ONE 2022, 17, e0278217. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.; Kim, Y.; Han, H.J.; Son, W.C.; Hong, Z.Y.; Sohn, I.; Shim, J.; Hwang, C. Predicting Successes and Failures of Clinical Trials with Outer Product–Based Convolutional Neural Network. Front. Pharmacol. 2021, 12, 670670. [Google Scholar] [CrossRef]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar] [CrossRef]
- Alvarez, S.A. An Exact Analytical Relation among Recall, Precision, and Classification Accuracy in Information Retrieval; Boston College: Chestnut Hill, MA, USA, 2002. [Google Scholar]
- Chang, V.; Heutte, L.; Petitjean, C.; Härtel, S.; Hitschfeld, N. Automatic Classification of Human Sperm Head Morphology. Comput. Biol. Med. 2017, 84, 205–216. [Google Scholar] [CrossRef]
- Yüzkat, M.; Ilhan, H.O.; Aydin, N. Multi-Model CNN Fusion for Sperm Morphology Analysis. Comput. Biol. Med. 2021, 137, 104790. [Google Scholar] [CrossRef] [PubMed]
Dataset | Image Colors | Classes | Dataset Size | Image Size |
---|---|---|---|---|
SVIA | Grayscale | 2 | >125,000 | 2 × 2 to 150 × 172 |
HuSHem | RGB | 4 | 216 | 131 × 131 |
SMIDS | RGB | 3 | 3000 | 122 × 122 to 259 × 201 |
Layer | Parameter | Value |
---|---|---|
Swin-T Transformer | A variant, Input Size | Imagenet 1K Pre-Trained, 224 |
MobileNetV3Small | Weights, alpha | Imagenet 1K Pre-Trained, 1.0 |
MinPooling2D | ||
Flatten | ||
Batch Normalization | ||
Encoder Block | 1st Dense, Activation | 16, ‘leaky Relu’ |
2nd Dense, Activation | 4, ‘leaky Relu’ | |
Latent Block | Dense, Activation | 16, ‘leaky Relu’ |
Decoder Block | 1st Dense, Activation | 32, ‘leaky Relu’ |
2nd Dense, Activation | 8, ‘leaky Relu’ | |
Classification Network | Dense, Activation | 32, ‘leaky Relu’ |
Layer | Parameter | Value |
---|---|---|
Swin-T Transformer | Variant, Input Size | Imagenet 1K Pre-Trained, 224 |
MobileNetV3Small | Weights, alpha | Imagenet 1K Pre-Trained, 1.0 |
MinPooling2D | ||
Flatten | ||
Batch Normalization | ||
Encoder Block | 1st Dense, Activation | 512 ‘leaky Relu’ |
2nd Dense, Activation | 128, ‘leaky Relu’ | |
3rd Dense, Activation | 128, ‘leaky Relu’ | |
Latent Block | 1st Dense, Activation | 16, ‘linear’ |
2nd Dense, Activation | 8, ‘linear’ | |
3rd Dense, Activation | 16, ‘linear’ | |
Decoder Block | 1st Dense, Activation | 32, ‘leaky Relu’ |
2nd Dense, Activation | 32, ‘leaky Relu’ | |
3rd Dense, Activation | 128, ‘leaky Relu’ | |
Classification Network | Dense, Activation | 2, ‘softmax’ |
Layer | Parameter | Value |
---|---|---|
Swin-T Transformer | A variant, Input Size | Imagenet 1K Pre-Trained, 224 |
MobileNetV3Small | Weights, alpha | Imagenet 1K Pre-Trained, 0.75 |
MinPooling2D | ||
Flatten | ||
Batch Normalization | ||
Encoder Block | 1st Dense, Activation | 256 ‘leaky Relu’ |
2nd Dense, Activation | 64, ‘leaky Relu’ | |
Latent Block | Dense, Activation | 8, ‘linear’ |
Decoder Block | 1st Dense, Activation | 16, ‘leaky Relu’ |
2nd Dense, Activation | 64, ‘leaky Relu’ | |
Classification Network | Dense, Activation | 2, ‘softmax’ |
Model | SVIA | HuSHem | SMIDS |
---|---|---|---|
SwinMobile | 94.6% | 87.8% | 88.8% |
SwinMobile-AE | 95.4% | 97.6% | 91.7% |
SwinMobile-AE-mini | 95.2% | 92.7% | 90.7% |
Model | SVIA | HuSHem | SMIDS |
---|---|---|---|
SwinMobile | 94.6 | 88.3 | 88.8 |
SwinMobile-AE | 95.4 | 97.6 | 91.6 |
SwinMobile-AE-mini | 95.2 | 92.6 | 90.6 |
Model | SVIA | HuSHem | SMIDS |
---|---|---|---|
SwinMobile | 30.1 | 1.3 | 7.3 |
SwinMobile-AE | 30.2 | 1.2 | 7.2 |
SwinMobile-AE-mini | 29.7 | 1.5 | 7.2 |
Model | Avg. Training Time (min) | Avg. Inference Time (s) | Model Size | Model Parameters |
---|---|---|---|---|
SwinMobile | 173.37 | 30.09 | 112.96 | 29.22 M |
SwinMobile-AE | 173.09 | 30.22 | 130.99 | 33.95 M |
SwinMobile-AE-mini | 170.78 | 29.69 | 117.31 | 30.37 M |
Model | Avg. Accuracy | Avg. F1-Score | |
---|---|---|---|
Benchmark Models | DenseNet121 | 94.3% | 94.3 |
InceptionV3 | 94.1% | 94.1 | |
MobileNetV3Small | 53.9% | 39.7 | |
Swin-T | 89.7% | 89.7 | |
Xception | 94.9% | 94.9 | |
Proposed Models | SwinMobile | 94.6% | 94.6 |
SwinMobile-AE | 95.4% | 95.4 | |
SwinMobile-AE-mini | 95.2% | 95.2 |
Model | Accuracy | F1-Score |
---|---|---|
CE-SVM [69] | 78.5% | 78.9 |
Yüzkat et al. 2021 [70] | 85.2% | - |
SwinMobile (Our Model) | 87.8% | 88.3 |
Ilhan et al. 2022 [21] | 92.1% | - |
APDL [13] | 92.2% | 92.9 |
SwinMobile-AE-mini (Our Model) | 92.7% | 92.6 |
FT-VGG [18] | 94.0% | 94.1 |
MC-HSH [19] | 95.7% | 95.5 |
SwinMobile-AE (Our Model) | 97.6% | 97.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahali, M.I.; Leu, J.-S.; Darmawan, J.T.; Avian, C.; Bachroin, N.; Prakosa, S.W.; Faisal, M.; Putro, N.A.S. A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm. Sensors 2023, 23, 6613. https://doi.org/10.3390/s23146613
Mahali MI, Leu J-S, Darmawan JT, Avian C, Bachroin N, Prakosa SW, Faisal M, Putro NAS. A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm. Sensors. 2023; 23(14):6613. https://doi.org/10.3390/s23146613
Chicago/Turabian StyleMahali, Muhammad Izzuddin, Jenq-Shiou Leu, Jeremie Theddy Darmawan, Cries Avian, Nabil Bachroin, Setya Widyawan Prakosa, Muhamad Faisal, and Nur Achmad Sulistyo Putro. 2023. "A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm" Sensors 23, no. 14: 6613. https://doi.org/10.3390/s23146613
APA StyleMahali, M. I., Leu, J. -S., Darmawan, J. T., Avian, C., Bachroin, N., Prakosa, S. W., Faisal, M., & Putro, N. A. S. (2023). A Dual Architecture Fusion and AutoEncoder for Automatic Morphological Classification of Human Sperm. Sensors, 23(14), 6613. https://doi.org/10.3390/s23146613