In Situ Photoacoustic Detection System for SO2 in High-Pressure SF6 Buffer Gas Using UV LED
<p>Schematic diagram of PAS.</p> "> Figure 2
<p>The PA cell constant along with gas pressure.</p> "> Figure 3
<p>Function <span class="html-italic">f(P)</span> changes along with gas pressure.</p> "> Figure 4
<p>Absorption characteristics of SO<sub>2</sub> in the range from 180 nm to 400 nm.</p> "> Figure 5
<p>The emission spectrum of LED and absorption characteristics of SO<sub>2</sub> in the range from 250 nm to 330 nm.</p> "> Figure 6
<p>Three-dimensional model of the designed gas vessel and PA cell.</p> "> Figure 7
<p>UV LED-based SO<sub>2</sub> detection system: (<b>a</b>) schematic diagram and (<b>b</b>) practicality picture.</p> "> Figure 8
<p>Detection properties of the SO<sub>2</sub> detection system: (<b>a</b>) the linearity of the PA signal response and (<b>b</b>) series of measured results of different SO<sub>2</sub> concentrations.</p> "> Figure 9
<p>Allan variance analysis of the detection system.</p> "> Figure 10
<p>Frequency of the 50 times test results for pure SF<sub>6</sub> gas.</p> "> Figure 11
<p>Schematic diagram of the connection between measured equipment and the proposed SO<sub>2</sub> detection device.</p> "> Figure 12
<p>Linear fitting of gas pressure and PA signal.</p> "> Figure 13
<p>Linearity property of <span class="html-italic">k<sub>p</sub></span> vs. gas concentration c.</p> "> Figure 14
<p>Flowchart of the correction iteration process.</p> ">
Abstract
:1. Introduction
2. Detection Theory of SO2 PA Detection System
3. Establishment of the Detection System
3.1. Selection of SO2 Detection Wavelength and Excitation Light Source
3.2. Gas Vessel Design for High-Pressure Gas Detection
3.3. Basic Structure of Detection System
4. Test Results and Analysis of Detection System
4.1. Quantitative Detection and Performance Assessment
4.2. Pressure Properties and Correction Method
4.2.1. Pressure Properties of the Detection System
4.2.2. Correction Method for Pressure Fluctuation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Liu, F.; Zhang, X.; Meng, Q.; Zhou, J. Partial discharge recognition through an analysis of SF6 decomposition products part 1: Decomposition characteristics of SF6 under four different partial discharges. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 29–36. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, J.; Zhang, X.; Pan, J.; Yao, Q.; Hou, X. Influence regularity of trace H2O on SF6 decomposition characteristics under partial discharge of needle-plate electrode. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 287–295. [Google Scholar] [CrossRef]
- Xia, Y.; Gong, Y.; Tao, H.; Wu, L.; Cheng, Y. Research on arrangement of Ultra High Frequency sensors based on GIS partial discharge. In Proceedings of the 2014 ICHVE International Conference on High Voltage Engineering and Application, Poznan, Poland, 8–11 September 2014; pp. 1–4. [Google Scholar]
- Yang, J.G.; Shi, W.; Li, H.T.; Gong, B.; Jiang, W.Y. Analysis of partial discharge Ultrasonic wave characteristic on typical Defects in GIS. MATEC Web Conf. 2016, 63, 01017. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Rong, M.; Yang, K.; Yang, A.; Wang, X.; Gao, Q.; Liu, A.B.D. Murphy, Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment. J. Phys. D Appl. Phys. 2016, 49, 155502. [Google Scholar] [CrossRef]
- Zeng, F.; Tang, J.; Zhang, X.; Xie, Y.; Yao, Q.; Miao, Y.; Zhang, C. Reconstructing and extracting information on SF6 decomposition characteristic components induced by partial overthermal fault in GIE. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 183–193. [Google Scholar] [CrossRef]
- Zhong, L.; Ji, S.; Liu, K.; Xiong, Q.; Zhu, L. Decomposition characteristics of SF6 under three typical defects and the diagnostic application of triangle method. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2594–2606. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Meng, Q.; Zhang, X.; Tao, J. Partial discharge recognition through an analysis of SF6 decomposition products part 2: Feature extraction and decision tree-based pattern recognition. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 37–44. [Google Scholar] [CrossRef]
- Lin, T.; Zhang, G.; Qiu, Z.; Guo, R.; Li, K.; Han, D. Photoacoustic detection of SF6 decomposition by-products with broadband infrared source. In Proceedings of the 2014 International Conference Power System Technology, Chengdu, China, 20–22 October 2014; pp. 1541–1546. [Google Scholar]
- Yin, X.; Wu, H.; Dong, L.; Li, B.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, F.K.S. Tittel, ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption–Desorption Effect by Using a 7.41 μm External-Cavity Quantum Cascade Laser. ACS Sens. 2020, 5, 549–556. [Google Scholar] [CrossRef]
- Yin, X.; Dong, L.; Wu, H.; Zheng, H.; Ma, W.; Zhang, L.; Yin, W.; Xiao, L.; Jia, F.K.S. Tittel, Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm. Opt. Express 2017, 25, 32581. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Liu, Y.; Dong, X.; Xia, H.; Zhang, Z.; Li, J. Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 210, 120–125. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, X.; Cheng, Z.; Li, Y.; Xiao, H. Quantitative analysis of SO2, H2S and CS2 mixed gases based on ultraviolet differential absorption spectrometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 215, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Tang, J.; Cheng, L.; Zhang, C.; Fan, M.; Zhou, Q.; Yao, Q. Detection of SF6 decomposition components under partial discharge by photoacoustic spectrometry and its temperature characteristic. IEEE Trans. Instrum. Meas. 2016, 65, 1343–1351. [Google Scholar] [CrossRef]
- Chen, T.; Ma, F.; Zhao, Y.; Liao, Z.; Qiu, Z.; Zhang, G. Cantilever enhanced based photoacoustic detection of SF6 decomposition component SO2 using UV LED. Sens. Rev. 2022, 42, 70–75. [Google Scholar] [CrossRef]
- Chen, T.; Li, K.; Ma, F.; Qiu, X.; Qiu, Z.; Liao, Z.; Zhang, G. Application of Excimer Lamp in Quantitative Detection of SF6 Decomposition Component SO2. Sensors 2021, 21, 8165. [Google Scholar] [CrossRef]
- Chen, T.; Ma, F.; Zhao, Y.; Zhao, Y.; Wan, L.; Li, K.; Zhang, G. Portable ppb-level acetylene photoacoustic sensor for transformer on-field measurement. Optik 2021, 243, 167440. [Google Scholar] [CrossRef]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.; Bovensmann, H.; Frerick, J.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Danielache, S.O.; Eskebjerg, C.; Johnson, M.S.; Ueno, Y.; Yoshida, N. High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide: Ultraviolet absorption cross sections and isotope effects. J. Geophys. Res. 2008, 113, D17314. [Google Scholar] [CrossRef]
- Lai, H.; Ma, Y.; Zhang, W. Structure design and static analysis of observation window in cryogenic wind tunnel. Sci. Technol. Eng. 2021, 21, 4688–4694. [Google Scholar]
- Gong, Z.; Wu, G.; Chen, K.; Guo, M.; Ma, J.; Li, H.; Ma, F. Fiber-Tip Gas Transducer Based on All-Optical Photoacoustic Spectroscopy. J. Light. Technol. 2022, 40, 5300–5306. [Google Scholar] [CrossRef]
- Fujii, H.; Terabayashi, I.; Kobayashi, K.; Watanabe, M. Modeling photoacoustic pressure generation in colloidal suspensions at different volume fractions based on a multi-scale approach. Photoacoustics 2022, 27, 100368. [Google Scholar] [CrossRef]
- Ma, F.; Liao, Z.; Zhao, Y.; Qiu, Z.; Wan, L.; Li, K.; Zhang, G. Detection of trace C2H2 in N2 buffer gas with cantilever-enhanced photoacoustic spectrometer. Optik 2021, 232, 166525. [Google Scholar] [CrossRef]
Pressure (kPa) | Density (kg/m3) | Cp (kJ/kg-K) | Cp/Cv | Therm.Cond. (mW/m-K) | PA Cell Constant (Pa·cm/mW) |
---|---|---|---|---|---|
100 | 5.8566 | 0.67673 | 1.0968 | 13.365 | 0.341 |
200 | 11.842 | 0.68109 | 1.1014 | 13.410 | 0.357 |
300 | 17.964 | 0.68575 | 1.1064 | 13.458 | 0.374 |
350 | 21.079 | 0.68820 | 1.1091 | 13.484 | 0.384 |
400 | 24.231 | 0.69073 | 1.1118 | 13.511 | 0.393 |
500 | 30.652 | 0.69607 | 1.1176 | 13.568 | 0.414 |
Serial No | PA Signal (mV) | SO2 Concentration (ppm) |
---|---|---|
1 | 8.748 | 251.7 |
2 | 8.650 | 248.6 |
3 | 8.610 | 247.3 |
4 | 8.635 | 248.1 |
5 | 8.615 | 247.4 |
6 | 8.612 | 247.3 |
Average value | 8.645 | 248.4 |
Repeatability (%) | 0.558 | 0.627 |
SO2 Gas Concentration (ppm) | Linear Fitting Parameters | Gas Pressure Fluctuation 40 kPa | |||
---|---|---|---|---|---|
Slope (µV/kPa) | Intercept (mV) | R2 Value | PA Signal Deviation (µV) | Gas Concentration Deviation (ppm) | |
71.5 | 3.37 | 1.385 | 0.998 | 134.8 | 4.4 |
127.5 | 7.17 | 1.324 | 0.953 | 286.8 | 9.2 |
161.3 | 9.62 | 1.176 | 0.991 | 384.8 | 12.4 |
248.1 | 16.17 | 0.530 | 0.999 | 646.8 | 20.9 |
Standard Gas Concentration (ppm) | Gas Pressure (kPa) | Measured Gas Concentration Before Correction | Error Before (%) | Measured Gas Concentration after Correction | Error After (%) |
---|---|---|---|---|---|
68.7 | 470 | 65.2 | −5.09 | 68.1 | −0.87 |
520 | 71.9 | 4.66 | 69.9 | 1.75 | |
137.4 | 470 | 129.1 | −6.04 | 136.9 | −0.36 |
520 | 143.6 | 4.51 | 138.4 | 0.73 | |
274.7 | 470 | 255.9 | −6.84 | 373.3 | −0.51 |
520 | 288.3 | 4.95 | 276.6 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Li, K.; Chen, T.; Qiu, Z.; Zhang, G. In Situ Photoacoustic Detection System for SO2 in High-Pressure SF6 Buffer Gas Using UV LED. Sensors 2022, 22, 9846. https://doi.org/10.3390/s22249846
Hu W, Li K, Chen T, Qiu Z, Zhang G. In Situ Photoacoustic Detection System for SO2 in High-Pressure SF6 Buffer Gas Using UV LED. Sensors. 2022; 22(24):9846. https://doi.org/10.3390/s22249846
Chicago/Turabian StyleHu, Wei, Kang Li, Tunan Chen, Zongjia Qiu, and Guoqiang Zhang. 2022. "In Situ Photoacoustic Detection System for SO2 in High-Pressure SF6 Buffer Gas Using UV LED" Sensors 22, no. 24: 9846. https://doi.org/10.3390/s22249846
APA StyleHu, W., Li, K., Chen, T., Qiu, Z., & Zhang, G. (2022). In Situ Photoacoustic Detection System for SO2 in High-Pressure SF6 Buffer Gas Using UV LED. Sensors, 22(24), 9846. https://doi.org/10.3390/s22249846