Energy-Efficient Harmonic Transponder Based on On-Off Keying Modulation for Both Identification and Sensing
<p>Block diagram of the proposed system, based on a modulation-capable Schottky-diode frequency doubler.</p> "> Figure 2
<p>Schematic diagram of the frequency doubler with a modulation port. Main parameters: <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mi>t</mi> </msub> <mo>=</mo> <mn>43</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>50.5</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>l</mi> <mi>o</mi> </msub> <mo>=</mo> <mn>41</mn> </mrow> </semantics></math> mm, <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> nH, and <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> pF. A BSS123 (ON-Semiconductors) MOS transistor is used to perform the OOK modulation.</p> "> Figure 3
<p>Equivalent circuits for the different signal components flowing through the doubler: (<b>a</b>) dc component, (<b>b</b>) fundamental frequency <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math>, and (<b>c</b>) second harmonic <math display="inline"><semantics> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Diode voltage <math display="inline"><semantics> <msub> <mi>v</mi> <mi>D</mi> </msub> </semantics></math> in time domain at <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> </mrow> </semantics></math> dBm: comparison between simulation and theoretical model (<b>a</b>) with the MOSFET switch closed (on) and (<b>b</b>) with the MOSFET switch open (off).</p> "> Figure 5
<p>Harmonic transponder for both identification and sensing. (<b>a</b>) photo of the frequency doubler prototype with modulation port. (<b>b</b>) photo of the wireless experimental setup. Frequency doubler PCB area: <math display="inline"><semantics> <mrow> <mn>15</mn> <mo>×</mo> <mn>23</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi>mm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math>.</p> "> Figure 6
<p>Doubler performance in static conditions. (<b>a</b>) output spectrum when the MOSFET is on and off (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.04</mn> </mrow> </semantics></math> GHz and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> </mrow> </semantics></math> dBm). Conversion loss of the doubler when the MOSFET is on and off (<b>b</b>) versus <math display="inline"><semantics> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.04</mn> </mrow> </semantics></math> GHz) and (<b>c</b>) versus <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> </mrow> </semantics></math> dBm).</p> "> Figure 7
<p>Output spectrum of the modulation-capable frequency doubler with <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> </mrow> </semantics></math> dBm. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math> kHz, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> MHz, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> MHz, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> MHz.</p> "> Figure 7 Cont.
<p>Output spectrum of the modulation-capable frequency doubler with <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> </mrow> </semantics></math> dBm. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math> kHz, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> MHz, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> MHz, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> MHz.</p> "> Figure 8
<p>Output spectrum of the modulation-capable frequency doubler: comparison between theory and measurements. (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> MHz and (<b>c</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> MHz. (<b>a</b>,<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> </mrow> </semantics></math> dBm and (<b>b</b>,<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>20</mn> </mrow> </semantics></math> dBm. “t” stands for theory and “m” for measurements.</p> "> Figure 9
<p>Dynamic power consumption of the modulator as a function of the modulation frequency. The equivalent capacitor <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> pF is estimated from <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>=</mo> <msub> <mi>P</mi> <mi>c</mi> </msub> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>V</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> V, with the aim to obtain the best match with the measurement results in the modulation frequency range of interest.</p> "> Figure 10
<p>Spectrum received from the complete wireless harmonic transponder for diverse modulation frequencies. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> kHz, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> kHz, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math> kHz, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> MHz.</p> "> Figure 10 Cont.
<p>Spectrum received from the complete wireless harmonic transponder for diverse modulation frequencies. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> kHz, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math> kHz, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math> kHz, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> MHz.</p> "> Figure 11
<p>Frequency doubler modulated by means of a reed switch. (<b>a</b>) reed switch on. (<b>b</b>) reed switch off.</p> "> Figure 12
<p>Schematic diagram of the frequency doubler modulated by a reed switch. A low-frequency reed switch for industrial application is used in the experiments. Lp models the parasitic switch inductance, including the connecting wires, and is on the order of <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>H.</p> "> Figure 13
<p>Measured results of the frequency doubler modulated by a reed switch. (<b>a</b>) Conversion loss of the doubler with the reed switch in on and of configuration. (<b>b</b>) Output spectrum of the doubler in the dynamic experiment.</p> "> Figure 14
<p>Frequency doubler modulated by a reed switch, used to monitor the rotational speed of an electric motor: (<b>a</b>) block diagram, and (<b>b</b>) photo of the experimental setup.</p> ">
Abstract
:1. Introduction
2. Theory
3. Experimental Results
4. Sensor Application
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alimenti, F.; Palazzi, V.; Mariotti, C.; Mezzanotte, P.; Correia, R.; Carvalho, N.B.; Roselli, L. Smart Hardware for Smart Objects: Microwave Electronic Circuits to Make Objects Smart. IEEE Microw. Mag. 2018, 19, 48–68. [Google Scholar] [CrossRef]
- Gu, X.; Srinaga, N.N.; Guo, L.; Hemour, S.; Wu, K. Diplexer-Based Fully Passive Harmonic Transponder for Sub-6-GHz 5G-Compatible IoT Applications. IEEE Trans. Microw. Theory Techn. 2019, 67, 1675–1687. [Google Scholar] [CrossRef]
- Mezzanotte, P.; Palazzi, V.; Alimenti, F.; Roselli, L. Innovative RFID Sensors for Internet of Things Applications. IEEE J. Microwaves 2021, 1, 55–65. [Google Scholar] [CrossRef]
- Mondal, S.; Kumar, D.; Chahal, P. Recent Advances and Applications of Passive Harmonic RFID Systems: A Review. Micromachines 2021, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Brauner, T.; Zhao, X. A Novel Carrier Suppression Method for RFID. IEEE Microw. Wireless Compon. Lett. 2009, 19, 128–130. [Google Scholar] [CrossRef]
- Boaventura, A.; Santos, J.; Oliveira, A.; Carvalho, N.B. Perfect Isolation: Dealing with Self-Jamming in Passive RFID Systems. IEEE Microw. Mag. 2016, 17, 20–39. [Google Scholar] [CrossRef]
- Colpitts, B.G.; Boiteau, G. Harmonic radar transceiver design: Miniature tags for insect tracking. IEEE Trans. Antennas Propag. 2004, 52, 2825–2832. [Google Scholar] [CrossRef]
- Maggiora, R.; Saccani, M.; Milanesio, D.; Porporato, M. An Innovative Harmonic Radar to Track Flying Insects: The Case of Vespa velutina. Sci. Rep. 2019, 9, 11964. [Google Scholar] [CrossRef] [PubMed]
- Lavrenko, A.; Litchfield, B.; Woodward, G.; Pawson, S. Design and Evaluation of a Compact Harmonic Transponder for Insect Tracking. IEEE Microw. Wireless Compon. Lett. 2020, 30, 445–448. [Google Scholar] [CrossRef]
- Lazaro, A.; Villarino, R.; Girbau, D. A passive harmonic tag for humidity sensing. Int. J. Antennas Propag. 2014, 2014, 670345. [Google Scholar] [CrossRef]
- Kubina, B.; Romeu, J.; Mandel, C.; Schüßler, M.; Jakoby, R. Design of a quasi-chipless harmonic radar sensor for ambient temperature sensing. In Proceedings of the 2014 IEEE SENSORS, Valencia, Spain, 2–5 November 2014; pp. 1567–1570. [Google Scholar]
- Palazzi, V.; Mariotti, C.; Alimenti, F.; Virili, M.; Orecchini, G.; Mezzanotte, P.; Roselli, L. Demonstration of a chipless harmonic tag working as crack sensor for electronic sealing applications. Wirel. Power Transf. 2015, 2, 78–85. [Google Scholar] [CrossRef]
- Abdelnour, A.; Lazaro, A.; Villarino, R.; Kaddour, D.; Tedjini, S.; Girbau, D. Passive Harmonic RFID System for Buried Assets Localization. Sensors 2018, 18, 3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The RECCO Technology. Available online: https://recco.com/technology/ (accessed on 5 December 2021).
- Ghazali, M.I.M.; Karuppuswami, S.; Chahal, P. 3-D Printed Embedded Passive Harmonic Sensor Tag as Markers for Buried Assets Localization. IEEE Sensors Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Rasilainen, K.; Ilvonen, J.; Lehtovuori, A.; Hannula, J.M.; Viikari, V. On design and evaluation of harmonic transponders. IEEE Trans. Antennas Propag. 2015, 63, 15–23. [Google Scholar] [CrossRef]
- Gu, X.; Lin, W.; Hemour, S.; Wu, K. Readout Distance Enhancement of Battery-Free Harmonic Transponder. IEEE Trans. Microw. Theory Techn. 2021, 69, 3413–3424. [Google Scholar] [CrossRef]
- Alimenti, F.; Palazzi, V.; Mezzanotte, P.; Roselli, L. Zero-Power Temperature Sensor for Wireless Harmonic Systems based on a Reflection-type Phase Shifter and a Bimorph Cantilever. In Proceedings of the 2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), San Antonio, TX, USA, 26–29 January 2022. [Google Scholar]
- Mondal, S.; Chahal, P. A Passive Harmonic RFID Tag and Interrogator Development. IEEE J. Radio Freq. Identif. 2019, 3, 98–107. [Google Scholar] [CrossRef]
- Schwerdt, H.N.; Xu, W.; Shekhar, S.; Abbaspour-Tamijani, A.; Towe, B.C.; Miranda, F.A.; Chae, J. A Fully Passive Wireless Microsystem for Recording of Neuropotentials Using RF Backscattering Methods. J. Microelectromech. Syst. 2011, 20, 1119–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Hui, X.; Kan, E.C. Harmonic-WISP: A passive broadband harmonic RFID platform. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. [Google Scholar]
- Bao, M.; Kozhuharov, R.; Chen, J.; Zirath, H. A D-Band Keyable High Efficiency Frequency Quadrupler. IEEE Microw. Wirel. Components Lett. 2014, 24, 793–795. [Google Scholar]
- Li, Y.; Goh, W.L.; Liu, C.; Cui, B.; Liu, H.; Xiong, Y. A 324-GHz Source/Modulator With -6.5 dBm Output Power. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 412–418. [Google Scholar] [CrossRef]
- Wu, K.; Fahs, B.; Hella, M. A 220 GHz OOK Outphasing Transmitter in 130-nm BiCMOS Technology. In Proceedings of the 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, USA, 14–17 October 2018; pp. 227–230. [Google Scholar]
- Palazzi, V.; Alimenti, F.; Mezzanotte, P.; Virili, M.; Mariotti, C.; Orecchini, G.; Roselli, L. Low-Power Frequency Doubler in Cellulose-Based Materials for Harmonic RFID Applications. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 896–898. [Google Scholar] [CrossRef]
- Maas, S.A. Nonlinear Microwave and RF Circuits, 2nd ed.; Artech House: Boston, MA, USA; London, UK, 2003. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; ninth Dover printing, tenth GPO printing; Dover: New York City, NY, USA, 1964; p. 376. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007; p. 230. [Google Scholar]
- EPC™Radio-Frequency Identity Protocols Generation-2 UHF RFID. GS1 EPCglobal Inc. Available online: https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf (accessed on 5 December 2021).
Ref. | Mod. Principle | Tech. | Multiplier Type | (dBm) | CL (dB) | On/Off (dB) | (GHz) | (MHz) |
---|---|---|---|---|---|---|---|---|
this work | dc term. variation | Schottky | passive | −10 | 15.1 | −23 | 2.08 | 15 |
[13] | bias variation | Schottky | passive | / | / | / | 1.736 | 0.032 |
[19] | bias variation | varactor | passive | −10 | 15 | 26 | 868 | 0.0328 |
[20] | bias variation | varactor | passive | / | / | / | 4.4 | 0.005 |
[21] | input match | Schottky | passive | 0 | 23 | 44 | 1.83 | 0.15 |
[22] | out amp on/off | InP HBT | active | 3 | −2 | 20 | 240 | 14,000 |
[23] | driver amp on/off | SiGe HBT | active | 0 | −6.5 | 20 | 324 | 7500 |
[24] | outphasing | SiGe HBT | active | / | / | 33 | 216 | 8000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzi, V.; Roselli, L.; Tentzeris, M.M.; Mezzanotte, P.; Alimenti, F. Energy-Efficient Harmonic Transponder Based on On-Off Keying Modulation for Both Identification and Sensing. Sensors 2022, 22, 620. https://doi.org/10.3390/s22020620
Palazzi V, Roselli L, Tentzeris MM, Mezzanotte P, Alimenti F. Energy-Efficient Harmonic Transponder Based on On-Off Keying Modulation for Both Identification and Sensing. Sensors. 2022; 22(2):620. https://doi.org/10.3390/s22020620
Chicago/Turabian StylePalazzi, Valentina, Luca Roselli, Manos M. Tentzeris, Paolo Mezzanotte, and Federico Alimenti. 2022. "Energy-Efficient Harmonic Transponder Based on On-Off Keying Modulation for Both Identification and Sensing" Sensors 22, no. 2: 620. https://doi.org/10.3390/s22020620
APA StylePalazzi, V., Roselli, L., Tentzeris, M. M., Mezzanotte, P., & Alimenti, F. (2022). Energy-Efficient Harmonic Transponder Based on On-Off Keying Modulation for Both Identification and Sensing. Sensors, 22(2), 620. https://doi.org/10.3390/s22020620