Design and Performance Analysis of an Ultrasonic System for Health Monitoring of Concrete Structure
<p>Physical maps of the testing system.</p> "> Figure 2
<p>Block diagram of ultrasonic testing system.</p> "> Figure 3
<p>80 Vpp square wave pulse.</p> "> Figure 4
<p>100 Vpp square wave pulse.</p> "> Figure 5
<p>120 Vpp square wave pulse.</p> "> Figure 6
<p>140 Vpp square wave pulse.</p> "> Figure 7
<p>160 Vpp square wave pulse.</p> "> Figure 8
<p>Square wave signals in the pulse emission circuit.</p> "> Figure 9
<p>Residual similarity and Pearson correlation coefficients.</p> "> Figure 10
<p>The input signal of the amplifier circuit.</p> "> Figure 11
<p>The output signal of the amplifier circuit.</p> "> Figure 12
<p>Test curve of OPA657 performance.</p> "> Figure 13
<p>The input signal of the filter circuit.</p> "> Figure 14
<p>The output signal of the filter circuit.</p> "> Figure 15
<p>Test curve of filter bandwidth.</p> "> Figure 16
<p>The single cycle ultrasonic signal.</p> "> Figure 17
<p>Four received waveforms.</p> "> Figure 18
<p>Analysis of waveform magnitude-squared coherence.</p> "> Figure 19
<p>Average values of Pearson correlation coefficient and average values of RMSE.</p> ">
Abstract
:1. Introduction
2. Description of the Ultrasonic Detection System
2.1. The Overall Design Scheme of the System
2.2. Pulse Transmitting Module
2.3. Signal Receiving Module
2.4. System Workflow
3. Performance Analysis of the System Submodule
3.1. Pulse Transmitting Module Performance Assessment
3.2. Receiving Module Performance Assessment
4. System Output Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Felice, M.V.; Fan, Z. Sizing of flaws using ultrasonic bulk wave testing: A review. Ultrasonics 2018, 88, 26–42. [Google Scholar] [CrossRef]
- Shah, A.A.; Ribakov, Y. Damage detection in concrete using nonlinear signal attenuation ultrasound. Lat. Am. J. Solids Struct. 2012, 9, 713–730. [Google Scholar]
- Lai, W.L.; Wang, Y.H.; Kou, S.C.; Poon, C.S. Dispersion of ultrasonic guided surface wave by honeycomb in early-aged concrete. NDT E Int. 2013, 57, 7–16. [Google Scholar] [CrossRef]
- Turó, A.; Chávez, J.A.; García-Hernández, M.J.; Bulkai, A.; Tomek, P.; Tóth, G.; Gironés, A.; Salazar, J. Ultrasonic inspection system for powder metallurgy parts. Measurement 2013, 46, 1101–1108. [Google Scholar] [CrossRef]
- Feng, G.; Qi, T.; Du, X.; Wang, Z.; Zhang, Y. Acoustic emission and ultrasonic characteristics in the failure process of cemented waste concrete-coal gangue backfilling (CWCGB) under uniaxial loading. Adv. Civ. Eng. 2018, 2018, 8960806. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Miao, Z.L.; Cheng, H.X.; Cheng, L. The hardware design of ultrasonic flaw detector based on single-chip microcomputer AT89C52. In Proceedings of the 3rd International Conference on Applied Mechanics, Materials and Manufacturing (ICAMMM 2013), Dalian, China, 24–25 August 2013; pp. 2427–2430. [Google Scholar]
- Svilainis, L.; Dumbrava, V.; Chaziachmetovas, A. Investigation of the half bridge and transformer push–pull pulser topologies for ultrasonic transducer excitation. J. Circuits Syst. Comput. 2015, 24, 1550062. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, C.H. An analysis of excitation pulse adjustable signal of ultrasonic flaw detection. Acoust. Methods 2018, 54, 510–518. [Google Scholar] [CrossRef]
- Wang, X.P.; Deng, K.; Zhang, Z.W. Development of a dual-channel sonar transmitter with time-sharing working. Tech. Acoust. 2019, 38, 387–390. [Google Scholar]
- Ion, P.; Florea, B.C. Pulse amplifier used in ultrasonic nondestructive testing. Rev. Roum. Des Sci. Tech.-Ser. Electrotech. Energetique 2017, 62, 68–71. [Google Scholar]
- Tarpara, E.G.; Patankar, V.H. Design and development of reconfigurable embedded system for real-time acquisition and processing of multichannel ultrasonic signals. IET Sci. Meas. Technol. 2019, 13, 1048–1058. [Google Scholar] [CrossRef]
- Gilliland, S.; Govindan, P.; Saniie, J. Architecture of the reconfigurable ultrasonic system-on-chip hardware platform. IET Circuits Devices Syst. 2016, 10, 301–308. [Google Scholar] [CrossRef]
- Gong, Q. Study on ultrasonic testing equipment EMATEST-BB. Appl. Mech. Mater. 2013, 256–259, 2379–2382. [Google Scholar] [CrossRef]
- Jelali, M. An overview of control performance assessment technology and industrial applications. Control. Eng. Pract. 2006, 14, 14441–14466. [Google Scholar] [CrossRef]
- Li, H.S.; Chen, S.S. Detection ability mathematical model and performance assessment method in visible-light photoelectric detection system. IEEE Sens. J. 2017, 17, 1649–1655. [Google Scholar] [CrossRef]
- Yang, X.J.; Xu, Z.F.; Zhang, X. Overview and difficulties analysis on credibility assessment of simulation models. Comput. Sci. 2019, 46, 23–29. [Google Scholar]
- Jiao, P.; Tang, J.B.; Cha, Y.B. Amelioration and application of similar degree method for simulation credibility assessment. J. Syst. Simul. 2007, 12, 2658–2660. [Google Scholar]
- Hafiz, A.; Schumacher, T. Monitoring of applied stress in concrete using ultrasonic full-waveform comparison techniques. In Proceedings of the Conference on Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, OR, USA, 19 April 2017. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Li, P.; Chen, Y.; Li, H. Dual Gaussian attenuation model of ultrasonic echo and its parameter estimation. AIP Adv. 2019, 9, 055213. [Google Scholar] [CrossRef] [Green Version]
- Ahmadian, H.; Najafi, G.; Ghobadian, B.; Hassan-Beygi, S.R.; Hoseini, S.S. Assessment of the combustion-induced noise and vibration using coherence and wavelet coherence estimates in a diesel engine. Int. J. Engine Res. 2019, 22, 827–846. [Google Scholar] [CrossRef]
- Asadollahi, A.; Khazanovich, L. Numerical investigation of the effect of heterogeneity on the attenuation of shear waves in concrete. Ultrasonics 2019, 91, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.K.; Um, J.Y. An Ultrasonic echo-signal based digital background calibration for pipelined SAR ADC. J. Semicond. Technol. Sci. 2019, 19, 561–570. [Google Scholar] [CrossRef]
- Trimberger, S.; Carberry, D.; Johnson, A.; Wong, J. A time-multiplexed FPGA. In Proceedings of the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186, Napa Valley, CA, USA, 16–18 April 1997. [Google Scholar] [CrossRef]
- Tarpara, E.G.; Patankar, V.H. Reconfigurable hardware implementation of coherent averaging technique for ultrasonic NDT instruments. Ultrasonics 2020, 105, 106106. [Google Scholar] [CrossRef]
- Gu, F.C.; Chang, H.C.; Hsueh, Y.M.; Kuo, C.C.; Chen, B.R. Development of a high-speed data acquisition card for partial discharge measurement. IEEE Access 2019, 7, 140312–140318. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xie, F.C.; Yang, G.W.; Zhang, W. The transceiver circuit design of digital ultrasonic system. In Proceedings of the 3rd International Conference on Materials and Products Manufacturing Technology (ICMPMT 2013), Guangzhou, China, 25–26 September 2013; pp. 968–973. [Google Scholar]
- Kamal, N.; Lahgere, A.; Singh, J. Assessment of radiation resiliency on emerging junctionless/dopingless devices and circuits. IEEE Trans. Device Mater. Reliab. 2019, 19, 728–732. [Google Scholar] [CrossRef]
- Zhang, S.M. A piezoelectric pump drive circuit based of an integrated switching-type electroluminescent chip. Chin. J. Sci. Instrum. 2014, 32, 121–125. [Google Scholar]
- Reddy, K.N.; Pradabane, S. Modified H-bridge inverter based fault-tolerant multilevel topology for open-end winding induction motor drive. IET Power Electron. 2019, 12, 2810–2820. [Google Scholar] [CrossRef]
- Zhengping, X.; Yongsen, X.; Yuan, Y. Performance verification of staring laser active imaging system. Opt. Precis. Eng. 2017, 25, 1441–1448. [Google Scholar] [CrossRef]
- Yu, S.B.; Zhang, S.; Chen, X. Study on hi-order RC active filter integrated and optimization techniques. J. Zhejiang Norm. Univ. (Nat. Sci.) 2009, 3, 7–11. [Google Scholar]
- Rebonatto, M.T.; Schmitz, M.A.; Spalding, L.E.S. Methods of comparison and similarity scoring for electrical current waveforms. In Proceedings of the 12th Iberian Conference on Information Systems and Technologies, Lisbon, Portugal, 14–17 June 2017. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, X.N.; Li, Y. Fault detection and diagnosis based on residual dissimilarity in dynamic principal component analysis. ACTA Autom. Sin. 2020. [Google Scholar] [CrossRef]
- Ambrosanio, M.; Franceschini, S.; Grassini, G.; Baselice, F. A multi-channel ultrasound system for non-contact heart rate monitoring. IEEE Sens. J. 2020, 20, 2064–2074. [Google Scholar] [CrossRef]
- Choi, W.Y.; Park, K.K. Array type miniaturized ultrasonic sensors to detect urban sinkholes. Measurement 2019, 141, 371–379. [Google Scholar] [CrossRef]
- Wang, S.H.; Tsai, M.C. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach. Ultrasonics 2011, 51, 617–624. [Google Scholar] [CrossRef] [PubMed]
Experimental Parameters | Parameter Values |
---|---|
Pulse amplitude | ±50 V |
Pulse width | 10 μs |
Pulse interval | 3.99 ms |
Sampling frequency | 1 MHz |
Transducer center distance | 45 mm |
Magnification | 46 dB |
Wave Number | Wave Number | Pearson Correlation Coefficient | RMSE | Conclusion |
---|---|---|---|---|
17 | 29 | 0.7032 | 0.1405 | The smallest Pearson correlation coefficient, the largest RMSE |
4 | 37 | 0.9459 | 0.0532 | Pearson correlation coefficient is the median |
6 | 34 | 0.9462 | 0.0564 | RMSE is the median |
24 | 27 | 0.9991 | 0.0069 | The largest Pearson correlation coefficient, the smallest RMSE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Hu, T.; Zheng, R.; Ba, P.; Zhang, Q. Design and Performance Analysis of an Ultrasonic System for Health Monitoring of Concrete Structure. Sensors 2021, 21, 6606. https://doi.org/10.3390/s21196606
Zhao J, Hu T, Zheng R, Ba P, Zhang Q. Design and Performance Analysis of an Ultrasonic System for Health Monitoring of Concrete Structure. Sensors. 2021; 21(19):6606. https://doi.org/10.3390/s21196606
Chicago/Turabian StyleZhao, Jinhui, Tianyu Hu, Ruifang Zheng, Penghui Ba, and Qichun Zhang. 2021. "Design and Performance Analysis of an Ultrasonic System for Health Monitoring of Concrete Structure" Sensors 21, no. 19: 6606. https://doi.org/10.3390/s21196606
APA StyleZhao, J., Hu, T., Zheng, R., Ba, P., & Zhang, Q. (2021). Design and Performance Analysis of an Ultrasonic System for Health Monitoring of Concrete Structure. Sensors, 21(19), 6606. https://doi.org/10.3390/s21196606