A Multi-Sensor Fusion Underwater Localization Method Based on Unscented Kalman Filter on Manifolds
<p>The Transformation of Lie Groups and Lie algebras.</p> "> Figure 2
<p>External environment of underwater caves.</p> "> Figure 3
<p>Sparus II AUV internal structure.</p> "> Figure 4
<p>Underwater cave trajectory estimation results for the three UKF-M filters proposed in this paper. (<b>a</b>) The 3D trajectory estimation results; (<b>b</b>) 2D trajectory estimation results.</p> "> Figure 5
<p>Transformations of the three filters in the three positional coordinate axes x, y, and z with the three attitude angles of yaw, pitch, and roll axes over time.</p> "> Figure 6
<p>Underwater cave trajectory estimation results of DR, RIEKF, EKF, and LeftUKF-M proposed in this paper. (<b>a</b>) The 3D trajectory estimation results; (<b>b</b>) 2D trajectory estimation results.</p> "> Figure 7
<p>Transformation of DR, RIEKF, EKF, and LeftUKF-M in x, y, and z axes and yaw, pitch, and roll axes with time.</p> ">
Abstract
:1. Introduction
- Accurate AUV kinematic state modeling in an space and sensor modeling for the hydroacoustic sensors of the IMU, DVL, depth sensor, and gyroscope are established;
- The retraction and inverse retraction functions are established for this AUV system to realize the propagation of the Sigma points of the Lie algebra state uncertainty between the Lie group space and the Li algebra space, and two different propagation methods, left-equivariant and right-equivariant, are designed based on this;
- A manifolds-based UKF algorithm in this space is constructed to estimate and update the state of the AUV. The feasibility of the proposed algorithm as well as its implementation are finally verified using a real underwater cave dataset to ensure the improvement of the localization accuracy of the AUV.
2. Establishment of System Model
2.1. AUV Model Description
2.2. IMU Measurement Model
2.3. DVL Measurement Model
2.4. Depth Sensor Measurement Model
2.5. Magnetometer Measurement Model
3. Multi Sensor Fusion Localization Method
3.1. Filter Design
3.2. Estimating State Uncertainty
3.3. Predicting System Status
Algorithm 1: A Multi-sensor Fusion Underwater Localization Method |
1 Input: Angular velocity , Acceleration DVL, Depth Sensor and Magnetometer measurement Observing noise , System noise , State input noise , Sigma point 16 End |
- (1)
- Propagation Step.
- (2)
- Update Step.
4. Experimental Result and Analysis
4.1. Underwater Cave Dataset
4.2. Experimental Effect of Fusion Algorithm
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, S.; Li, A.Q.; Rekleitis, I. Svin2: An underwater slam system using sonar, visual, inertial, and depth sensor. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), The Venetian Macao, Macau, 3–8 November 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Rahman, S.; Li, A.Q.; Rekleitis, I. SVIn2: A multi-sensor fusion-based underwater SLAM system. Int. J. Robot. Res. 2022, 41, 1022–1042. [Google Scholar] [CrossRef]
- Bucci, A.; Franchi, M.; Ridolfi, A.; Secciani, N.; Allotta, B. Evaluation of UKF-based fusion strategies for autonomous underwater vehicles multisensor navigation. IEEE J. Ocean. Eng. 2022, 48, 1–26. [Google Scholar] [CrossRef]
- Lee, J.H.; Ricker, N.L. Extended Kalman filter based nonlinear model predictive control. Ind. Eng. Chem. Res. 1994, 33, 1530–1541. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), Lake Louise, AB, Canada, 1–4 October 2000; IEEE: New York, NY, USA, 2000. [Google Scholar]
- Izenman, A.J. Introduction to manifold learning. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 439–446. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, W.-A.; Sun, H.; Yu, L. Learning-Aided Inertial Odometry with Nonlinear State Estimator on Manifold. IEEE Trans. Intell. Transp. Syst. 2023, 24, 9792–9803. [Google Scholar] [CrossRef]
- Wagner, R.; Birbach, O.; Frese, U. Rapid development of manifold-based graph optimization systems for multi-sensor calibration and SLAM. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE: New York, NY, USA, 2011. [Google Scholar]
- Pan, J.; Liu, J.; Wang, X.; Chen, C.; Pan, X. Boring chatter identification by multi-sensor feature fusion and manifold learning. Int. J. Adv. Manuf. Technol. 2020, 109, 1137–1151. [Google Scholar] [CrossRef]
- Duistermaat, J.J.; Kolk, J.A.C. Lie Groups; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Park, F.C.; Bobrow, J.E.; Ploen, S.R. A Lie group formulation of robot dynamics. Int. J. Robot. Res. 1995, 14, 609–618. [Google Scholar] [CrossRef]
- Damers, J. Lie Groups Applied to Localisation of Mobile Robots. Ph.D. Thesis, ENSTA Bretagne-École Nationale Supérieure de Techniques Avancées Bretagne, Brest, France, 2022. [Google Scholar]
- Fernandes, M.R.; Magalhães, G.M.; Zúñiga, Y.R.C.; Val, J.B.R.D. GNSS/MEMS-INS integration for drone navigation using EKF on lie groups. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7395–7408. [Google Scholar] [CrossRef]
- Chahbazian, C. Particle Filtering on Lie Groups: Application to Navigation. Ph.D. Thesis, Université Paris-Saclay, Paris, France, 2023. [Google Scholar]
- Barrau, A.; Bonnabel, S. Invariant kalman filtering. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 237–257. [Google Scholar] [CrossRef]
- Bonnable, S.; Martin, P.; Salaün, E. Invariant extended Kalman filter: Theory and application to a velocity-aided attitude estimation problem. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–18 December 2009; IEE: New York, NY, USA, 2009. [Google Scholar]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter. In Kalman Filtering and Neural Networks; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; pp. 221–280. [Google Scholar]
- Brossard, M.; Bonnabel, S.; Barrau, A. Unscented Kalman filter on Lie groups for visual inertial odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Du, S.; Huang, Y.; Lin, B.; Qian, J.; Zhang, Y. A lie group manifold-based nonlinear estimation algorithm and its application to low-accuracy SINS/GNSS integrated navigation. IEEE Trans. Instrum. Meas. 2022, 71, 1002927. [Google Scholar] [CrossRef]
- Jeong, D.B.; Ko, N.Y. Sensor Fusion for Underwater Vehicle Navigation Compensating Misalignment Using Lie Theory. Sensors 2024, 24, 1653. [Google Scholar] [CrossRef] [PubMed]
- Phogat, K.S.; Chang, D.E. Invariant extended Kalman filter on matrix Lie groups. Automatica 2020, 114, 108812. [Google Scholar] [CrossRef]
- Barrau, A.; Bonnabel, S. The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 2016, 62, 1797–1812. [Google Scholar] [CrossRef]
- Hartley, R.; Ghaffari, M.; Eustice, R.M.; Grizzle, J.W. Contact-aided invariant extended Kalman filtering for robot state estimation. Int. J. Robot. Res. 2020, 39, 402–430. [Google Scholar] [CrossRef]
- Potokar, E.R.; Norman, K.; Mangelson, J.G. Invariant extended kalman filtering for underwater navigation. IEEE Robot. Autom. Lett. 2021, 6, 5792–5799. [Google Scholar] [CrossRef]
- Menegaz, H.M.; Ishihara, J.Y.; Borges, G.A.; Vargas, A.N. A systematization of the unscented Kalman filter theory. IEEE Trans. Autom. Control 2015, 60, 2583–2598. [Google Scholar] [CrossRef]
- Brossard, M.; Bonnabel, S.; Condomines, J.-P. Unscented Kalman filtering on Lie groups. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Huang, G.P.; Mourikis, A.I.; Roumeliotis, S.I. A quadratic-complexity observability-constrained unscented Kalman filter for SLAM. IEEE Trans. Robot. 2013, 29, 1226–1243. [Google Scholar] [CrossRef]
- Brossard, M.; Barrau, A.; Bonnabel, S. A code for unscented Kalman filtering on manifolds (UKF-M). In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Iserles, A.; Munthe-Kaas, H.Z.; Nørsett, S.P.; Zanna, A. Lie-group methods. Acta Numer. 2000, 9, 215–365. [Google Scholar] [CrossRef]
- Gilmore, R. Lie Groups, Lie Algebras, and Some of Their Applications; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In Robotics: Science and Systems XI; Sapienza University of Rome: Rome, Italy, 2015. [Google Scholar]
- Barrau, A.; Bonnabel, S. Intrinsic filtering on Lie groups with applications to attitude estimation. IEEE Trans. Autom. Control 2014, 60, 436–449. [Google Scholar] [CrossRef]
- Boumal, N. An Introduction to Optimization on Smooth Manifolds; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Bonnabel, S. Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control 2013, 58, 2217–2229. [Google Scholar] [CrossRef]
- Mallios, A.; Ridao, P.; Ribas, D.; Hernández, E. Scan matching SLAM in underwater environments. Auton. Robot. 2014, 36, 181–198. [Google Scholar] [CrossRef]
- Mallios, A.; Ridao, P.; Ribas, D.; Carreras, M.; Camilli, R. Toward autonomous exploration in confined underwater environments. J. Field Robot. 2016, 33, 994–1012. [Google Scholar] [CrossRef]
Sensors | Specifications | |
---|---|---|
AHRS—XSens MTi | Angular resolution | 0.05 deg |
Repeatability | 0.2 deg | |
Static accuracy (roll/pitch) | 0.5 deg | |
Static accuracy (Heading) | 1 deg | |
Dynamic accuracy | 2 deg RMS | |
DVL—LinkQuest NavQuest 600 Micro | Frequency | 600 kHz |
Velocity accuracy | 0.2% ± 1 mm/s | |
Altitude | 0.3–140 m | |
Max ping rate | 5 Hz | |
Depth—DS2806 HPS-A | Pressure range | 0–5 bar |
Output span | 4 V ± 1% | |
Output zero | 1 V ± 1% of span | |
Repeatability | ±0.25% of span | |
Profiling sonar—Tritech Super SeaKing DFP | Frequency | 0.6|1.1 MHz |
Max range | 80|40 m | |
Beamwidth | 2|1 deg | |
Scan rate (360 deg sector) | 4–25 s | |
Down-looking analog camera | System | PAL |
Resolution | 384 × 288 pixels | |
Lighting source | 2 × 24 W HID |
Cone Num | DR | UKF-M | LeftUKF-M | RightUKF-M | EKF | RIEKF |
---|---|---|---|---|---|---|
1 | 6.60 | 2.76 | 2.11 | 2.52 | 2.66 | 3.74 |
2 | 3.84 | 2.21 | 2.02 | 1.97 | 2.30 | 2.96 |
3 | 2.81 | 2.41 | 1.92 | 2.14 | 2.89 | 3.37 |
4 | 3.54 | 2.99 | 2.98 | 2.84 | 3.48 | 3.39 |
5 | 2.44 | 0.99 | 0.97 | 0.98 | 1.00 | 1.03 |
6 | 4.37 | 1.72 | 1.36 | 1.67 | 2.29 | 1.87 |
Avg. | 3.93 | 2.18 | 1.89 | 2.02 | 2.44 | 2.73 |
Cone Distance | Ground Truth | DR | UKF-M | LeftUKF-M | RightUKF-M | EKF | RIEKF |
---|---|---|---|---|---|---|---|
1→2 | 19 | 17.07 | 17.51 | 17.50 | 17.44 | 17.42 | 17.82 |
2→3 | 32 | 31.53 | 31.32 | 31.36 | 31.28 | 30.81 | 30.88 |
3→2 | 32 | 31.38 | 32.29 | 32.13 | 32.11 | 31.65 | 31.96 |
3→4 | 16 | 12.52 | 14.35 | 14.46 | 14.10 | 14.19 | 14.11 |
4→3 | 16 | 13.23 | 17.79 | 17.68 | 17.66 | 17.71 | 17.77 |
6→1 | 30 | 26.42 | 31.50 | 31.46 | 31.80 | 30.96 | 31.03 |
Cone Distance | DR | UKF-M | LeftUKF-M | RightUKF-M | EKF | RIEKF |
---|---|---|---|---|---|---|
1→2 | 1.93 | 1.49 | 1.50 | 1.56 | 1.58 | 1.18 |
2→3 | 0.47 | 0.68 | 0.64 | 0.72 | 1.19 | 1.12 |
3→2 | 0.62 | 0.29 | 0.13 | 0.11 | 0.35 | 0.04 |
3→4 | 3.48 | 1.65 | 1.54 | 1.90 | 1.81 | 1.89 |
4→3 | 2.77 | 1.79 | 1.68 | 1.66 | 1.71 | 1.77 |
6→1 | 3.58 | 1.50 | 1.46 | 1.80 | 0.96 | 1.03 |
Avg. | 2.14 | 1.23 | 1.16 | 1.29 | 1.27 | 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xie, C.; Liu, Y.; Zhu, J.; Qin, J. A Multi-Sensor Fusion Underwater Localization Method Based on Unscented Kalman Filter on Manifolds. Sensors 2024, 24, 6299. https://doi.org/10.3390/s24196299
Wang Y, Xie C, Liu Y, Zhu J, Qin J. A Multi-Sensor Fusion Underwater Localization Method Based on Unscented Kalman Filter on Manifolds. Sensors. 2024; 24(19):6299. https://doi.org/10.3390/s24196299
Chicago/Turabian StyleWang, Yang, Chenxi Xie, Yinfeng Liu, Jialin Zhu, and Jixing Qin. 2024. "A Multi-Sensor Fusion Underwater Localization Method Based on Unscented Kalman Filter on Manifolds" Sensors 24, no. 19: 6299. https://doi.org/10.3390/s24196299
APA StyleWang, Y., Xie, C., Liu, Y., Zhu, J., & Qin, J. (2024). A Multi-Sensor Fusion Underwater Localization Method Based on Unscented Kalman Filter on Manifolds. Sensors, 24(19), 6299. https://doi.org/10.3390/s24196299