An Efficient Availability Guaranteed Deployment Scheme for IoT Service Chains over Fog-Core Cloud Networks †
<p>Fog-core cloud service function chains (SFCs) for IoT applications. Each SFC is deployed through a chain of virtual network functions (VNFs) across the core cloud and fog networking to serve end IoT users.</p> "> Figure 2
<p>Scenarios for the redundancy deployment of the primary VNF at the fog layer.</p> "> Figure 3
<p>The number of required CPU units for redundancy deployment of MC, REACH, and IPS.</p> "> Figure 4
<p>The maximum number of admitted services each scheme can afford.</p> "> Figure 5
<p>The percentage of admitted services under various service reliability requirements.</p> "> Figure 6
<p>The ratio between of the bandwidth consumption of IPS and IPS without the collaborative scheme under various SFC availability requirements.</p> ">
Abstract
:1. Introduction
2. Related Work
3. The Analytical Models
3.1. Network Model
3.2. VNF Model
3.3. Service Function Chaining Model
3.4. Availability/Reliability Model
3.5. Cost Model
3.5.1. Capital Expenditure (CAPEX)
3.5.2. Operating Expenditure (OPEX)
4. An Efficient Availability-Aware Primary VNF Embedding Mechanism
Algorithm 1 Primary VNF Embedding Scheme |
INPUT:, A set of SFC requests , OUTPUT: The primary VNF embedding plan Initialize: Calculate for related VNF instance j Repeat for all do for do if then SelectMaxRCR(AvailableVNFInstances()); else ProximityBasedNewVNFDeployment(); end if end for = AvailabilityScoreCheck(); if then Complete(); else IPS-RedudancyAllocation(); end if end for UNTIL , is embedded or resources run out. |
5. The VNF Redundancy Allocation Cost Minimization Problem
5.1. Objective Function
- Availability requirements of the SFCs are satisfied
- The redundancy deployment cost (i.e., the number of CPUs) is minimized.
5.2. Constraints
6. A Cost-Efficient Redundancy Allocation Scheme for VNFs
6.1. Reliability Importance Measure
6.2. A Cost-Efficient Improvement Potential Measure for VNFs
6.3. A Cost Efficient VNF Redundancy Allocation Scheme
Algorithm 2 IPS Algorithm for VNF Redundancy Allocation |
INPUT:, A set of SFCs where , OUTPUT: The VNF redundancy allocation embedding plan Initialize: Calculate , Repeat for all do while do MaxIPSBasedVNFRedundancyAllocation(); = ReliabilityCheck(); end while end for UNTIL , or resources run out. |
6.4. A Collaborative Redundancy Placement Scheme for VNFs at the Fog Layer
Algorithm 3 A Collaborative Redundancy Deployment Scheme for VNFs at the Fog Layer |
INPUT:, a primary VNF f, its redundancy cost c, node P,, fog O, OUTPUT: The selected node for deploying the redundancy of f Initialize: Selected node , , for all do if then if & then ; ; end if end if end for if then ; end if if then ; end if RETURN s |
7. Performance Evaluation
7.1. Complexity Analysis
7.2. IPS and ILP
7.3. CPU Unit Cost for Redundancy Deployment
7.4. Scalability Test
7.5. Under Service Availability Requirement Variation
8. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Miorandi, D.; Sicari, S.; Pellegrini, F.D.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Katsinis, G.; Tsiropoulou, E.E.; Papavassiliou, S. Joint Resource Block and Power Allocation for Interference Management in Device to Device Underlay Cellular Networks: A Game Theoretic Approach. Mob. Netw. Appl. 2017, 22, 539–551. [Google Scholar] [CrossRef]
- Misra, S.; Chatterjee, S.; Obaidat, M.S. On Theoretical Modeling of Sensor Cloud: A Paradigm Shift From Wireless Sensor Network. IEEE Syst. J. 2017, 11, 1084–1093. [Google Scholar] [CrossRef]
- Dinh, T.; Kim, Y. An efficient sensor-cloud interactive model for on-demand latency requirement guarantee. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Dinh, T.; Kim, Y.; Lee, H. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications. Sensors 2017, 17, 489. [Google Scholar] [CrossRef] [PubMed]
- ETSI. Network Functions Virtualisation (NFV): Architectural Framework; ETSI GS NFV 002 V1.1.1; ETSI: Sophia Antipolis, France, 2013. [Google Scholar]
- Cziva, R.; Pezaros, D.P. Container Network Functions: Bringing NFV to the Network Edge. IEEE Commun. Mag. 2017, 55, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jin, J.; Yuan, D.; Zhang, H. Virtual Fog: A Virtualization Enabled Fog Computing Framework for Internet of Things. IEEE Internet Things J. 2018, 5, 121–131. [Google Scholar] [CrossRef]
- Van Lingen, F.; Yannuzzi, M.; Jain, A.; Irons-Mclean, R.; Lluch, O.; Carrera, D.; Perez, J.L.; Gutierrez, A.; Montero, D.; Marti, J.; et al. The Unavoidable Convergence of NFV, 5G, and Fog: A Model-Driven Approach to Bridge Cloud and Edge. IEEE Commun. Mag. 2017, 55, 28–35. [Google Scholar] [CrossRef]
- Vilalta, R.; Lopez, V.; Giorgetti, A.; Peng, S.; Orsini, V.; Velasco, L.; Serral-Gracia, R.; Morris, D.; Fina, S.D.; Cugini, F.; et al. TelcoFog: A Unified Flexible Fog and Cloud Computing Architecture for 5G Networks. IEEE Commun. Mag. 2017, 55, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.; Kim, Y. Information centric sensor-cloud integration: An efficient model to improve wireless sensor networks’ lifetime. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Qi, H.; Li, K.; Zhou, X. PRSFC-IoT: A Performance and Resource Aware Orchestration System of Service Function Chaining for Internet of Things. IEEE Internet Things J. 2018, 5, 1400–1410. [Google Scholar] [CrossRef]
- Morabito, R.; Beijar, N. A Framework based on SDN and Containers for Dynamic Service Chains on IoT Gateways. In Proceedings of the ACM SIGCOMM 2017 1st International Workshop on Hot Topics in Container, Los Angeles, CA, USA, 25 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Linthicum, D.S. Connecting Fog and Cloud Computing. IEEE Cloud Comput. 2017, 4, 18–20. [Google Scholar] [CrossRef]
- Byers, C.C. Architectural Imperatives for Fog Computing: Use Cases, Requirements, and Architectural Techniques for Fog-Enabled IoT Networks. IEEE Commun. Mag. 2017, 55, 14–20. [Google Scholar] [CrossRef]
- Park, Y.; Yang, H.; Dinh, T.; Kim, Y. Design and implementation of a container-based virtual client architecture for interactive digital signage systems. Int. J. Distrib. Sens. Netw. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- ETSI. Network Functions Virtualisation (NFV): Reliability; ETSI GS NFV-REL 003 v1.1.1; ETSI: Sophia Antipolis, France, 2016. [Google Scholar]
- Dinh, T.; Kim, Y.; Gu, T.; Vasilakos, A.V. An Adaptive Low-Power Listening Protocol for Wireless Sensor Networks in Noisy Environments. IEEE Syst. J. 2017, 12, 1–12. [Google Scholar] [CrossRef]
- Dinh, T.; Kim, Y. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud. Sensors 2016, 16, 992. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Assi, C.; Shaban, K.; Khabbaz, M. A Reliability-Aware Network Service Chain Provisioning with Delay Guarantees in NFV-Enabled Enterprise Datacenter Networks. IEEE Trans. Netw. Serv. Manag. 2017, 14, 554–568. [Google Scholar] [CrossRef]
- Herker, S.; An, X.; Kiess, W.; Beker, S.; Kirstaedter, A. Data-Center Architecture Impacts on Virtualized Network Functions Service Chain Embedding with High Availability Requirements. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Qu, L.; Assi, C.; Shaban, K.; Khabbaz, M. Reliability-aware service provisioning in NFV-enabled enterprise datacenter networks. In Proceedings of the 2016 12th International Conference on Network and Service Management (CNSM), Montreal, QC, Canada, 31 October–4 November 2016; pp. 153–159. [Google Scholar] [CrossRef]
- Dinh, T.; Kim, Y. An efficient improvement potential-based virtual network function selection scheme for reliability/availability improvement. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 461–463. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Bu, S.; Niyato, D.; Yu, F.R.; Han, Z. Computing Resource Allocation in Three-Tier IoT Fog Networks: A Joint Optimization Approach Combining Stackelberg Game and Matching. IEEE Internet Things J. 2017, 4, 1204–1215. [Google Scholar] [CrossRef]
- Ni, L.; Zhang, J.; Jiang, C.; Yan, C.; Yu, K. Resource Allocation Strategy in Fog Computing Based on Priced Timed Petri Nets. IEEE Internet Things J. 2017, 4, 1216–1228. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Z.; Tsang, D.H.K. Challenges and Solutions in Fog Computing Orchestration. IEEE Netw. 2017, 32, 122–129. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Ahmed, E.; Ahmed, A.; Yaqoob, I.; Shuja, J.; Gani, A.; Imran, M.; Shoaib, M. Bringing Computation Closer toward the User Network: Is Edge Computing the Solution? IEEE Commun. Mag. 2017, 55, 138–144. [Google Scholar] [CrossRef]
- Liu, Y.; Fieldsend, J.E.; Min, G. A Framework of Fog Computing: Architecture, Challenges, and Optimization. IEEE Access 2017, 5, 25445–25454. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kumar, N.; Zeadally, S. Network Service Chaining in Fog and Cloud Computing for the 5G Environment: Data Management and Security Challenges. IEEE Commun. Mag. 2017, 55, 114–122. [Google Scholar] [CrossRef]
- Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing: State-of-the-art and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 416–464. [Google Scholar] [CrossRef]
- Guerzoni, R.; Despotovic, Z.; Trivisonno, R.; Vaishnavi, I. Modeling Reliability Requirements in Coordinated Node and Link Mapping. In Proceedings of the 2014 IEEE 33rd International Symposium on Reliable Distributed Systems, Nara, Japan, 6–9 October 2014; pp. 321–330. [Google Scholar] [CrossRef]
- Fan, J.; Ye, Z.; Guan, C.; Gao, X.; Ren, K.; Qiao, C. GREP: Guaranteeing Reliability with Enhanced Protection in NFV. In Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization, London, UK, 21 August 2015; ACM: New York, NY, USA, 2016; pp. 13–18. [Google Scholar] [CrossRef]
- Ayoubi, S.; Zhang, Y.; Assi, C. RAS: Reliable auto-scaling of virtual machines in multi-tenant cloud networks. In Proceedings of the 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, ON, Canada, 5–7 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Hmaity, A.; Savi, M.; Musumeci, F.; Tornatore, M.; Pattavina, A. Virtual Network Function placement for resilient Service Chain provisioning. In Proceedings of the 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), Halmstad, Sweden, 12–15 September 2016; pp. 245–252. [Google Scholar] [CrossRef]
- Rausand, M.; Hsyland, A. System Reliability Theory: Models and Statistical Method; WILEY: Hoboken, NJ, USA, 2004. [Google Scholar]
- Bruschi, R.; Davoli, F.; Lago, P.; Lombardo, A.; Lombardo, C.; Rametta, C.; Schembra, G. An SDN/NFV Platform for Personal Cloud Services. IEEE Trans. Netw. Serv. Manag. 2017, 14, 1143–1156. [Google Scholar] [CrossRef]
- Baktir, A.C.; Ozgovde, A.; Ersoy, C. How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Commun. Surv. Tutor. 2017, 19, 2359–2391. [Google Scholar] [CrossRef]
- Mohan, N.; Kangasharju, J. Edge-Fog cloud: A distributed cloud for Internet of Things computations. In Proceedings of the 2016 Cloudification of the Internet of Things (CIoT), Paris, France, 23–25 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Sarkar, S.; Misra, S. Theoretical modelling of fog computing: A green computing paradigm to support IoT applications. IET Netw. 2016, 5, 23–29. [Google Scholar] [CrossRef]
Parameter | Meaning |
---|---|
N | a set of nodes |
L | a set of links between nodes |
reliability of i | |
availability of i | |
a set S of SFC requests | |
a set of VNF types | |
M VNFs in order of an SFC | |
reliability requirement of SFC s | |
reliability of an SFC | |
availability of an SFC | |
reliability of VNF j | |
capital expenditure | |
operating expenditure | |
the number of VNF instances of type | |
the data rate of the instance of VNF | |
energy consumption rate of VNF type | |
a decision binary variable | |
general cost for redundancy deployment of VNF | |
compute cost for redundancy deployment of VNF | |
memory cost for redundancy deployment of VNF | |
total memory capacity of p | |
total compute capacity of p | |
link capacity of link l | |
reliability-cost ratio for i to select j as the next node | |
Birnbaum Importance Measure of VNF i in f | |
reliability of the system when a redundancy of VNF i is deployed | |
reliability of the system when the maximum reliability of VNF i can be achieved | |
The current reliability of the system | |
cost to achieve | |
Improvement potential per a unit cost of i |
Scheme | Availability Requirement | Achieved Availability | Computation Time |
---|---|---|---|
ILP | 0.95 | 0.9504 | 9425 |
0.99 | 0.9918 | 17,341 | |
0.999 | 0.99908 | 24,152 | |
0.9995 | 0.999515 | 26,263 | |
IPS | 0.95 | 0.9517 | 0.36 |
0.99 | 0.9925 | 0.45 | |
0.999 | 0.99923 | 0.61 | |
0.9995 | 0.99953 | 0.72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh, N.-T.; Kim, Y. An Efficient Availability Guaranteed Deployment Scheme for IoT Service Chains over Fog-Core Cloud Networks. Sensors 2018, 18, 3970. https://doi.org/10.3390/s18113970
Dinh N-T, Kim Y. An Efficient Availability Guaranteed Deployment Scheme for IoT Service Chains over Fog-Core Cloud Networks. Sensors. 2018; 18(11):3970. https://doi.org/10.3390/s18113970
Chicago/Turabian StyleDinh, Ngoc-Thanh, and Younghan Kim. 2018. "An Efficient Availability Guaranteed Deployment Scheme for IoT Service Chains over Fog-Core Cloud Networks" Sensors 18, no. 11: 3970. https://doi.org/10.3390/s18113970
APA StyleDinh, N. -T., & Kim, Y. (2018). An Efficient Availability Guaranteed Deployment Scheme for IoT Service Chains over Fog-Core Cloud Networks. Sensors, 18(11), 3970. https://doi.org/10.3390/s18113970