Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film
<p>The schematic of SAW based gas sensor (<b>a</b>) and Love wave based sensor (<b>b</b>).</p> "> Figure 2
<p>(<b>a</b>) supramolecular interactions of CrypA towards CH<sub>4</sub> and (<b>b</b>) synthesis of cryptophane-A.</p> "> Figure 3
<p>FEM analysis on Love wave devices (<b>a</b>) waveguide structure of SiO<sub>2</sub>/Al electrodes/36° YX LiTaO<sub>3</sub>; (<b>b</b>) Meshing structure and (<b>c</b>) Love wave displacement profile.</p> "> Figure 4
<p>The calculated COM parameters varying with SiO<sub>2</sub> thickness: (<b>a</b>) velocity; (<b>b</b>) static capacitance; (<b>c</b>) excitation coefficient and (<b>d</b>) coupling coefficient.</p> "> Figure 5
<p>The simulated and measured response characteristics of the proposed Love wave device.</p> "> Figure 6
<p>The AFM characterizing picture of the prepared SiO<sub>2</sub> overlay, (<b>a</b>) surface characteristic; and (<b>b</b>) thickness measurement.</p> "> Figure 7
<p>The measured temperature stability of the Love wave device.</p> "> Figure 8
<p>Surface topography description of the CrypA by AFM.</p> "> Figure 9
<p>(<b>a</b>) The differential oscillation loop and (<b>b</b>) integrated sensor system.</p> "> Figure 10
<p>Frequency stability test of the proposed sensor system.</p> "> Figure 11
<p>The experimental setup for characterizing the proposed Love wave sensor.</p> "> Figure 12
<p>The repeatability test of the proposed sensor upon exposure to 5% CH<sub>4.</sub></p> "> Figure 13
<p>The sensitivity evaluation of the proposed Love wave sensor.</p> "> Figure 14
<p>The temperature stability testing of the proposed sensor upon exposure to 5% CH<sub>4</sub>.</p> ">
Abstract
:1. Introduction
2. COM Simulation for Love Wave Sensing Devices
3. Technique Realization
3.1. Love Wave Devices
3.1.1. SH-SAW Delay Line Preparation
3.1.2. SiO2 Guiding Layer Deposition
3.1.3. Love Wave Device Characterization
3.2. Sensing Material Preparation
3.3. Differential Oscillator Configuration
4. Discussion Experimental Results and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rana, L.; Gupta, R.; Tomar, M. ZnO/ST-Quartz SAW resonator: An efficient NO2 sensor. Sens. Actuators B 2017, 252, 252–257. [Google Scholar] [CrossRef]
- Marcu, A.; Viespe, C. Surface acoustic wave sensors for Hydrogen and Deuterium detection. Sensors 2017, 17, 1417. [Google Scholar] [CrossRef] [PubMed]
- Raj, V.B.; Tomar, M.; Nimal, A.T. Nano-crystalline SnO2 thin film based surface acoustic wave sensor for selective and fast detection of NO2 gas. Adv. Sci. Lett. 2014, 20, 1124–1128. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, C.Y.; Shen, C.Y.; Zhi, J.L. Nitric oxide sensing properties of a surface acoustic wave sensor with copper-ion-doped polyaniline/tungsten oxide nanocomposite film. Sens. Actuators B 2017, 243, 1075–1082. [Google Scholar]
- Asad, M.; Sheikhi, M.H. Surface acoustic wave based H2S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles. Sens. Actuators B 2014, 198, 134–141. [Google Scholar] [CrossRef]
- Wang, W.; He, S.T.; Li, S.Z. Enhanced Sensitivity of SAW Gas Sensor Coated Molecularly Imprinted Polymer Incorporating High Frequency Stability Oscillator. Sens. Actuator B 2007, 125, 422–427. [Google Scholar]
- Wohltijon, H.; Ressy, R. Surface Acoustic Wave Probe for Chemical Analysis: part I—Instruction and Instrument Description, part II—Gas Chromatography Detector. Anal. Chem. 1979, 51, 1458–1469. [Google Scholar] [CrossRef]
- Souteyrand, E.; Nicolas, D.; Martin, J.R.; Chauvet, J.P.; Perez, H. Behaviour of cryptophane molecules in gas media. Sens. Actuators B 1996, 33, 182–187. [Google Scholar] [CrossRef]
- Garel, L.; Dutasta, J.P.; Collet, A. Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution. Angew. Chem. Int. Ed. Engl. 1993, 32, 1169–1171. [Google Scholar] [CrossRef]
- Wang, W.; Hu, H.L.; He, S.T.; Pan, Y.; Zhang, C.H.; Dong, C. Development of a room temperature SAW methane gas sensor incorporating a supramolecular cryptophane a coating. Sensors 2016, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Caniceill, J.; Collet, A. Two step synthesis of D3 and C3h cryptophanes. J. Chem. Soc. Chem. Commun. 1988, 9, 582–584. [Google Scholar] [CrossRef]
- Sun, P.; Jiang, Y.D.; Xie, G.Z. A room temperature supramolecular quartz crystal microbalance (QCM) methane gas sensor. Sens. Actuators B 2009, 141, 104–108. [Google Scholar] [CrossRef]
- Khoshaman, A.H.; Li, P.C.H.; Merbouh, N. Highly sensitive supra-molecular thin films for gravimetric detection of methane. Sens. Actuators B 2012, 161, 954–960. [Google Scholar] [CrossRef]
- Sayago, I.; Matatagui, D. Graphere oxide sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent stimulants. Talants 2016, 146, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Dejous, C.; Hallil, H.; Raimbault, V. Love acoustic wave-based devices and molecularly imprinted polymers as versatile sensors for electronic nose or tongue for cancer monitoring. Sensors 2016, 16, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, C.; Rediere, D.; Dejous, C. Detection of GB and DMMP Vapors by Love Wave Acoustic Sensors Using Strong Acidic Fluoride Polymers. IEEE Sens. J. 2004, 4, 479–488. [Google Scholar] [CrossRef]
- Wang, W.; Xie, X.; Chen, G.; He, S.T. Temperature-compensated Love wave based gas sensor on waveguide structure of SiO2/36° LiTaO3. Smart Mater. Struct. 2015, 24, 065019. [Google Scholar] [CrossRef]
- Xu, F.Q.; Wang, W.; Hou, J.L.; Liu, M.H. Temperature Effects on the Propagation Characteristics of Love Waves along Multi-Guide Layers of SiO2/Su-8 on ST-90°X. Quartz. Sensors 2012, 12, 7337–7349. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; He, S.T.; Liu, M.H.; Pan, Y. Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection. Sensors 2011, 11, 1526–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
COM Parameters | Values | COM Parameters | Values |
---|---|---|---|
SAW velocity (m/s) | 3962.08 | Normalized excitation coefficient | 0.0196 |
Normalized coupling coefficient (Ω−1/2) | 4.7628 × 10−4 | Normalized static capacitance (F/m) | 4.6736 × 10−10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Fan, S.; Liang, Y.; He, S.; Pan, Y.; Zhang, C.; Dong, C. Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film. Sensors 2018, 18, 3247. https://doi.org/10.3390/s18103247
Wang W, Fan S, Liang Y, He S, Pan Y, Zhang C, Dong C. Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film. Sensors. 2018; 18(10):3247. https://doi.org/10.3390/s18103247
Chicago/Turabian StyleWang, Wen, Shuyao Fan, Yong Liang, Shitang He, Yong Pan, Caihong Zhang, and Chuan Dong. 2018. "Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film" Sensors 18, no. 10: 3247. https://doi.org/10.3390/s18103247
APA StyleWang, W., Fan, S., Liang, Y., He, S., Pan, Y., Zhang, C., & Dong, C. (2018). Enhanced Sensitivity of a Love Wave-Based Methane Gas Sensor Incorporating a Cryptophane-A Thin Film. Sensors, 18(10), 3247. https://doi.org/10.3390/s18103247