A Framework for Separating Climate and Anthropogenic Contributions to Evapotranspiration Changes in Natural to Agricultural Regions of Watersheds Based on Machine Learning
<p>The geographical location of the Songhua River Basin.</p> "> Figure 2
<p>The flowchart of Random Forest Regression.</p> "> Figure 3
<p>Conceptual framework of the method for quantifying evapotranspiration influenced by climate change and that influenced by human activities of human-managed land cover types (taking the rainfed agricultural transition areas in saline-alkali land as an example).</p> "> Figure 4
<p>Land cover change in the study area: (<b>a</b>) Songhua River Basin in the 1980s, (<b>b</b>) Songhua River Basin in the 2015s and (<b>c</b>) Land use transfer contribution. F, forest area; G, grassland area; M, marshland area; SA, saline-alkali land; R, rainfed agriculture; I, irrigated agriculture; S, settlement; W, water.</p> "> Figure 5
<p>Annual anomaly and cumulative anomaly of evapotranspiration (ET) for forest (<b>a</b>), grassland (<b>b</b>), marshland (<b>c</b>), and saline-alkali land (<b>d</b>) in the Songhua River Basin from 1980 to 2015, along with the spatial distribution of both the average annual ET (<b>e</b>–<b>h</b>) and its changing trends (<b>i</b>–<b>l</b>) across the basin.</p> "> Figure 6
<p>Cross-validation of ET<sub>n</sub> prediction for the four types of natural areas.</p> "> Figure 7
<p>The importance of the variables for four regional ET<sub>n</sub> prediction models.</p> "> Figure 8
<p>Spatial distribution of ET<sub>m</sub> and ET<sub>h</sub> in the natural (forest, grassland, marshland, and SA) to rainfed agriculture areas from 1980 to 2015. SA is short for saline-alkali land.</p> "> Figure 9
<p>Spatial distribution of ET<sub>m</sub> and ET<sub>h</sub> in the natural (forest, grassland, marshland, and SA) to irrigated agriculture areas from 1980 to 2015. SA is short for saline-alkali land.</p> "> Figure 10
<p>Climate and anthropogenic contributions to evapotranspiration changes from 1980 to 2015 in the natural to agricultural areas.</p> "> Figure 11
<p>Component planes of the seven training parameters in the SOM of the ecological–agricultural transformation region and average <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ET</mi> </mrow> <mrow> <mi mathvariant="normal">h</mi> </mrow> </msub> </mrow> </semantics></math> in the nine allocated areas. (IA: irrigated agriculture; RA: rainfed agriculture; SA: saline-alkali land; Numbers 1 to 9 indicate the sub-regions with different meteorological conditions obtained through clustering using the SOM algorithm in each natural–agricultural transformation region).</p> "> Figure 12
<p>Component planes of the seven training parameters in the SOM of the natural–agricultural transformation region and average <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ET</mi> </mrow> <mrow> <mi mathvariant="normal">m</mi> </mrow> </msub> </mrow> </semantics></math> in the nine allocated areas. (IA: irrigated agriculture; RA: rainfed agriculture; SA: saline-alkali land; Numbers 1 to 9 indicate the sub-regions with different meteorological conditions obtained through clustering using the SOM algorithm in each natural–agricultural transformation region).</p> "> Figure 13
<p>Cross-validation of ET<sub>n</sub> prediction for the four types of natural areas based on XGBoost algorithm.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Evapotranspiration
2.2.2. Environment Factors
- (1)
- Meteorological data
- (2)
- Topographic data
2.2.3. Land Cover
2.3. Methods
2.3.1. Trend Analysis
2.3.2. Land Use Change Analyses
2.3.3. Introduction to Models
- (1)
- Random Forest Regression (RFR)
- (2)
- Evaluation of the Random Forest Models
- (1)
- Correlation coefficient (R2)
- (2)
- Mean absolute error (MAE)
- (3)
- Root mean square error (RMSE)
2.3.4. Quantification Framework for ETm and ETh
2.3.5. Attribution Analysis for the Spatial Heterogeneity of ETh and ETm
3. Results
3.1. Changes from Natural Land Use to Cropland in the SRB
3.2. ET Changes in the Natural Land Use Regions in the SRB
3.3. Performance of the Random Forest Regression Model in ET Simulation
3.4. Separation of Climate and Anthropogenic Contributions to ET Changes in the Natural–Agricultural Areas
3.4.1. Separation in the Natural to Rainfed Agriculture Areas
3.4.2. Separation in the Natural to Irrigated Agriculture Areas
4. Discussions
4.1. Spatial Heterogeneity of Anthropogenic Contributions to Evapotranspiration Changes
4.2. Spatial Heterogeneity of Climate Contributions to Evapotranspiration Changes
4.3. Uncertainty in the ET Separation Model
5. Conclusions
- (1)
- The developed models for natural areas (i.e., forest, grassland, marshland, and saline-alkali land) exhibited robust performance in fitting regional ET data, with R2 values reaching approximately 0.99.
- (2)
- There was a substantial conversion from natural land covers to agricultural covers from 1980 to 2015, with 24,972.32 km2 converted to rainfed agriculture and 4552.1 km2 to irrigated agriculture. In the regions converted to farmland, climate change caused a variation in ET from −3.4 mm to 29.7 mm in rainfed agriculture areas and −8.9 mm to 24.9 mm in irrigated agriculture areas.
- (3)
- Both the development of rainfed and irrigated agriculture led to an increase in evapotranspiration (ET) in the converted regions, respectively, ranging from 0.9 mm to 53.4 mm, and 2.9 mm to 55.9 mm. It is evident that agricultural development has a greater influence on ET changes than climate change.
- (4)
- Spatially, significant changes in for irrigated agriculture areas were predominantly located in regions with substantial shifts in energy-related factors (i.e., Wind, Temp, Srad, Lrad, and Pres). Conversely, pronounced changes in in rainfed agriculture areas were concentrated in areas with notable variations in moisture-related factors (i.e., Pre and Shum). This observation highlights the pivotal role of moisture supply in determining ET, which shows shifts to energy factors under adequate moisture conditions.
- (5)
- Evapotranspiration of farmland falls between that of forest/marshland and grassland/saline-alkali land. In regions with relatively low evapotranspiration capacity, such as grassland and saline-alkali land, agricultural development tends to significantly enhance evapotranspiration. These findings suggest that anthropogenic contributions to changes in ET are closely related to the original vegetation type and prevailing climatic conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, J.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.; Hook, S.; Baldocchi, D.; Townsend, P.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, W.; Yang, Y.; Zhang, W.; Yan, J.; Chen, X.; Li, S.; Mo, X. Separating Vegetation Greening and Climate Change Controls on Evapotranspiration Trend over the Loess Plateau. Sci. Rep. 2017, 7, 8191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.; McVicar, T.; Zhang, Q.; Yang, Y. Coupled Estimation of 500 m and 8-Day Resolution Global Evapotranspiration and Gross Primary Production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More Extreme Precipitation in the World’s Dry and Wet Regions. Nat. Clim. Change 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Wang, Y.; Ao, Y.; Li, Z. Evapotranspiration Characteristics of Different Oases and Effects of Human Activities on Evapotranspiration in Heihe River Basin. Remote Sens. 2022, 14, 6283. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a Greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Ji, P.; Wu, P.; Sheffield, J.; Otkin, J.A. A Global Transition to Flash Droughts under Climate Change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Forootan, E.; Khaki, M.; Schumacher, M.; Wulfmeyer, V.; Mehrnegar, N.; van Dijk, A.; Brocca, L.; Farzaneh, S.; Akinluyi, F.; Ramillien, G.; et al. Understanding the Global Hydrological Droughts of 2003-2016 and Their Relationships with Teleconnections. Sci. Total Environ. 2019, 650, 2587–2604. [Google Scholar] [CrossRef]
- Gharbia, S.; Smullen, T.; Gill, L.; Johnston, P.; Pilla, F. Spatially Distributed Potential Evapotranspiration Modeling and Climate Projections. Sci. Total Environ. 2018, 633, 571–592. [Google Scholar] [CrossRef]
- Jin, L.; Chen, S.; Yang, H.; Zhang, C. Evaluation and Drivers of Four Evapotranspiration Products in the Yellow River Basin. Remote Sens. 2024, 16, 1829. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y. Increasing Tibetan Plateau Terrestrial Evapotranspiration Primarily Driven by Precipitation. Agric. For. Meteorol. 2022, 317, 108887. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z. Derivation of the Relative Contributions of the Climate Change and Human Activities to Mean Annual Streamflow Change. J. Hydrol. 2021, 595, 125740. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, S.; Zhai, J.; He, G.; Zhao, Y.; Zhu, Y.; He, X.; Li, H.; Wang, L.; He, F.; et al. Effects of Vegetation Restoration on Evapotranspiration Water Consumption in Mountainous Areas and Assessment of Its Remaining Restoration Space. J. Hydrol. 2022, 605, 127259. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, Y.; Liu, Z.; Liu, T.; Tang, X. Estimation of Actual Evapotranspiration and Water Stress in Typical Irrigation Areas in Xinjiang, Northwest China. Remote Sens. 2024, 16, 2676. [Google Scholar] [CrossRef]
- Boé, J. Modulation of the Summer Hydrological Cycle Evolution over Western Europe by Anthropogenic Aerosols and Soil-Atmosphere Interactions. Geophys. Res. Lett. 2016, 43, 7678–7685. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, S.; Zhao, H. Distinct Contributions of Climate Change and Anthropogenic Activities to Evapotranspiration and Gross Primary Production Variations over Mainland China. Remote Sens. 2024, 16, 475. [Google Scholar] [CrossRef]
- Zeng, R.; Cai, X. Climatic and Terrestrial Storage Control on Evapotranspiration Temporal Variability: Analysis of River Basins around the World. Geophys. Res. Lett. 2016, 43, 185–195. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes over Multiple Time Scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Cong, Z.; Shen, Q.; Zhou, L.; Sun, T.; Liu, J. Evapotranspiration Estimation Considering Anthropogenic Heat Based on Remote Sensing in Urban Area. Sci. China-Earth Sci. 2017, 60, 659–671. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, C.; Gong, H.; Yeh, P.; Shen, Y.; Guo, Y.; Huang, Z.; Li, X. Detection of Human-Induced Evapotranspiration Using GRACE Satellite Observations in the Haihe River Basin of China. Geophys. Res. Lett. 2017, 44, 190–199. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Chen, C.; Fu, Z.; Peng, Z. Using Satellite Gravity and Hydrological Data to Estimate Changes in Evapotranspiration Induced by Water Storage Fluctuations in the Three Gorges Reservoir of China. Remote Sens. 2020, 12, 2143. [Google Scholar] [CrossRef]
- Liu, Y.; Mo, X.; Hu, S.; Chen, X.; Liu, S. Assessment of Human-Induced Evapotranspiration with GRACE Satellites in the Ziya-Daqing Basins, China. Hydrol. Sci. J. 2020, 65, 2577–2589. [Google Scholar] [CrossRef]
- Zeng, H.; Elnashar, A.; Wu, B.; Zhang, M.; Zhu, W.; Tian, F.; Ma, Z. A Framework for Separating Natural and Anthropogenic Contributions to Evapotranspiration of Human-Managed Land Covers in Watersheds Based on Machine Learning. Sci. Total Environ. 2022, 823, 153726. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zeng, H.; Yan, N.; Zhang, M. Approach for Estimating Available Consumable Water for Human Activities in a River Basin. Water Resour. Manag. 2018, 32, 2353–2368. [Google Scholar] [CrossRef]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Atiquzzaman, M.; Kandasamy, J. Prediction of Hydrological Time-Series Using Extreme Learning Machine. J. Hydroinformatics 2016, 18, 345–353. [Google Scholar] [CrossRef]
- Yan, J.; Jia, S.; Lv, A.; Zhu, W. Water Resources Assessment of China’s Transboundary River Basins Using a Machine Learning Approach. Water Resour. Res. 2019, 55, 632–655. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, P. A Machine Learning Analysis Based on Big Data for Eagle Ford Shale Formation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. [Google Scholar]
- Alhashem, M. Machine Learning Classification Model for Multiphase Flow Regimes in Horizontal Pipes. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar] [CrossRef]
- Allam, M.M.; Figueroa, A.J.; McLaughlin, D.B.; Eltahir, E.A.B. Estimation of Evaporation over the Upper Blue Nile Basin by Combining Observations from Satellites and River Flow Gauges. Water Resour. Res. 2016, 52, 644–659. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Chen, T.; Li, S.; Hagan, D.F.T.; Kattel, G.; Peng, J.; Jiang, T.; Su, B. A Harmonized Global Land Evaporation Dataset from Model-Based Products Covering 1980–2017. Earth Syst. Sci. Data 2021, 13, 5879–5898. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Publ. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fan, L.; Wang, H.; Wang, C.; Lai, W.; Zhao, Y. Exploration of Use of Copulas in Analysing the Relationship between Precipitation and Meteorological Drought in Beijing, China. Adv. Meteorol. 2017, 2017, 4650284. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the Self-Organizing Map. Neural Netw. Off. J. Int. Neural Netw. Soc. 2012, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.T.; Chang, L.C.; Chang, F.J. Exploring the Spatio-Temporal Interrelation between Groundwater and Surface Water by Using the Self-Organizing Maps. J. Hydrol. 2017, 556, 131–142. [Google Scholar] [CrossRef]
- Zou, M.; Niu, J.; Kang, S.; Li, X.; Lu, H. The Contribution of Human Agricultural Activities to Increasing Evapotranspiration Is Significantly Greater than Climate Change Effect over Heihe Agricultural Region. Sci. Rep. 2017, 7, 8805. [Google Scholar] [CrossRef]
- Shen, Q.; Cong, Z.; Lei, H. Evaluating the Impact of Climate and Underlying Surface Change on Runoff within the Budyko Framework: A Study across 224 Catchments in China. J. Hydrol. 2017, 554, 251–262. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Li, W.; Li, F.; Xin, Q. Ecological Responses to Climate Change and Human Activities in the Arid and Semi-Arid Regions of Xinjiang in China. Remote Sens. 2022, 14, 3911. [Google Scholar] [CrossRef]
- Martin, D.A.; Osen, K.; Grass, I.; Hoelscher, D.; Tscharntke, T.; Wurz, A.; Kreft, H. Land-Use History Determines Ecosystem Services and Conservation Value in Tropical Agroforestry. Conserv. Lett. 2020, 13, e12740. [Google Scholar] [CrossRef]
- Zhang, L.; Du, H.; Song, T.; Yang, Z.; Peng, W.; Gong, J.; Huang, G.; Li, Y. Conversion of Farmland to Forest or Grassland Improves Soil Carbon, Nitrogen, and Ecosystem Multi-Functionality in a Subtropical Karst Region of Southwest China. Sci. Rep. 2024, 14, 17745. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.; Shao, H. A Preliminary Investigation of the Dynamic Characteristics of Dried Soil Layers on the Loess Plateau of China. J. Hydrol. 2010, 381, 9–17. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, X.; Yu, X.; Ni, Y.; Ma, L.; Liu, Z. Species and Spatial Differences in Vegetation Rainfall Interception Capacity: A Synthesis and Meta-Analysis in China. Catena 2022, 213, 106223. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Wang, J.; Liu, C.; Shangguan, Z. Changes in Soil Water Holding Capacity and Water Availability Following Vegetation Restoration on the Chinese Loess Plateau. Sci. Rep. 2021, 11, 9692. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhang, Q.; Zhang, Y.; Yue, P.; Yang, Z.; Wang, S.; Zhang, L.; Li, H. Enhanced Impact of Vegetation on Evapotranspiration in the Northern Drought-Prone Belt of China. Remote Sens. 2023, 15, 221. [Google Scholar] [CrossRef]
- Zhu, G.; Wu, X.; Ge, J.; Liu, F.; Zhao, W.; Wu, C. Influence of Mining Activities on Groundwater Hydrochemistry and Heavy Metal Migration Using a Self-Organizing Map (SOM). J. Clean. Prod. 2020, 257, 120664. [Google Scholar] [CrossRef]
- Haselbeck, V.; Kordilla, J.; Krause, F.; Sauter, M. Self-Organizing Maps for the Identification of Groundwater Salinity Sources Based on Hydrochemical Data. J. Hydrol. 2019, 576, 610–619. [Google Scholar] [CrossRef]
- Ma, L.; Yu, G.; Chen, Z.; Yang, M.; Hao, T.; Zhu, X.; Zhang, W.; Lin, Q.; Liu, Z.; Han, L.; et al. Cascade Effects of Climate and Vegetation Influencing the Spatial Variation of Evapotranspiration in China. Agric. For. Meteorol. 2024, 344, 109826. [Google Scholar] [CrossRef]
- Shuai, Y.; Tian, Y.; Shao, C.; Huang, J.; Gu, L.; Zhang, Q.; Zhao, R. Potential Variation of Evapotranspiration Induced by Typical Vegetation Changes in Northwest China. Land 2022, 11, 808. [Google Scholar] [CrossRef]
- Caballero, C.B.; Ruhoff, A.; Biggs, T. Land Use and Land Cover Changes and Their Impacts on Surface-Atmosphere Interactions in Brazil: A Systematic Review. Sci. Total Environ. 2022, 808, 152134. [Google Scholar] [CrossRef] [PubMed]
- Thornthwaite, C.W. An Approach Toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Liu, J.; You, Y.; Li, J.; Sitch, S.; Gu, X.; Nabel, J.E.M.S.; Lombardozzi, D.; Luo, M.; Feng, X.; Arneth, A.; et al. Response of Global Land Evapotranspiration to Climate Change, Elevated CO2, and Land Use Change. Agric. For. Meteorol. 2021, 311, 108663. [Google Scholar] [CrossRef]
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.A.; Martin, A.C.; et al. Enhancing Climate Change Resilience in Agricultural Crops. Curr. Biol. 2023, 33, R1246–R1261. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hong, E.-M.; Choi, J.-Y. Has Climate Change Already Affected the Spatial Distribution and Temporal Trends of Reference Evapotranspiration in South Korea? Agric. Water Manag. 2015, 150, 129–138. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Zhang, L.; Zhang, Q.; Gan, R.; Li, X. Attribution of Evapotranspiration Changes in Humid Regions of China from 1982 to 2016. JGR Atmos. 2020, 125, e2020JD032404. [Google Scholar] [CrossRef]
- Rosa, L. Adapting Agriculture to Climate Change via Sustainable Irrigation: Biophysical Potentials and Feedbacks. Environ. Res. Lett. 2022, 17, 063008. [Google Scholar] [CrossRef]
- Yu, H.; Yang, T.; Li, S.; Kang, S.; Du, T.; Wang, Y.; Chen, H.; Guo, H. Surface Energy Fluxes in a Drip-Irrigated Agroecosystem: Unique Advection Effect of Oasis. Agric. For. Meteorol. 2024, 357, 110204. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Y.; Chen, J.; Zhang, T.; Li, Z. Seasonal and Interannual Variation of Radiation and Energy Fluxes over a Rain-Fed Cropland in the Semi-Arid Area of Loess Plateau, Northwestern China. Atmos. Res. 2016, 176–177, 240–253. [Google Scholar] [CrossRef]
- Denissen, J.M.C.; Teuling, A.J.; Pitman, A.J.; Koirala, S.; Migliavacca, M.; Li, W.; Reichstein, M.; Winkler, A.J.; Zhan, C.; Orth, R. Widespread Shift from Ecosystem Energy to Water Limitation with Climate Change. Nat. Clim. Change 2022, 12, 677–684. [Google Scholar] [CrossRef]
- Chen, Q.-W.; Liu, M.-J.; Lyu, J.; Li, G.; Otsuki, K.; Yamanaka, N.; Du, S. Characterization of Dominant Factors on Evapotranspiration with Seasonal Soil Water Changes in Two Adjacent Forests in the Semiarid Loess Plateau. J. Hydrol. 2022, 613, 128427. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, Q.; Bai, F.; Cao, X.; Wei, Z.; Lu, X.; Wei, N.; Yuan, H.; Zhang, S.; Liu, S.; et al. Reconciling Global Terrestrial Evapotranspiration Estimates from Multi-Product Intercomparison and Evaluation. Water Resour. Res. 2024, 60, e2024WR037608. [Google Scholar] [CrossRef]
- Xiao, J.; Sun, F.; Wang, T.; Wang, H. Estimation and Validation of High-Resolution Evapotranspiration Products for an Arid River Basin Using Multi-Source Remote Sensing Data. Agric. Water Manag. 2024, 298, 108864. [Google Scholar] [CrossRef]
- Wang, R.; You, X.; Shi, Y.; Wu, C. Enhancing Evapotranspiration Estimations through Multi-Source Product Fusion in the Yellow River Basin, China. Water 2024, 16, 2603. [Google Scholar] [CrossRef]
- Sillmann, J.; Thorarinsdottir, T.; Keenlyside, N.; Schaller, N.; Alexander, L.V.; Hegerl, G.; Seneviratne, S.I.; Vautard, R.; Zhang, X.; Zwiers, F.W. Understanding, Modeling and Predicting Weather and Climate Extremes: Challenges and Opportunities. Weather Clim. Extrem. 2017, 18, 65–74. [Google Scholar] [CrossRef]
- Băicoianu, A.; Gavrilă, C.G.; Păcurar, C.M.; Păcurar, V.D. Fractal Interpolation in the Context of Prediction Accuracy Optimization. Eng. Appl. Artif. Intell. 2024, 133, 108380. [Google Scholar] [CrossRef]
- Xiong, R.; Shi, Y.; Jing, H.; Liang, W.; Nakahira, Y.; Tang, P. Calibrating Subjective Data Biases and Model Predictive Uncertainties in Machine Learning-Based Thermal Perception Predictions. Build. Environ. 2024, 247, 111053. [Google Scholar] [CrossRef]
- Coulston, J.W.; Blinn, C.E.; Thomas, V.A.; Wynne, R.H. Approximating Prediction Uncertainty for Random Forest Regression Models. Photogramm. Eng. Remote Sens. 2016, 82, 189–197. [Google Scholar] [CrossRef]
β Value | Z Value | Trend |
---|---|---|
β > 0 | Z > 2.58 | Highly significant increase |
1.96 < Z ≤ 2.58 | Significant increase | |
Z ≤ 1.96 | Slight increase | |
β = 0 | Z∈Q | Unchanged |
β < 0 | Z ≤ 1.96 | Slight reduction |
1.96 < Z ≤ 2.58 | Significant reduction | |
Z > 2.58 | Highly significant reduction |
2015 | Forest | Grassland | Marshland | Saline-Alkali Land | Irrigated Agriculture | Rainfed Agriculture | Settlement | Water | |
---|---|---|---|---|---|---|---|---|---|
1980 | |||||||||
Forest | 214,836.80 | 4013.69 | 207.02 | 62.60 | 423.94 | 9818.00 | 160.42 | 126.90 | |
Grassland | 2295.84 | 59,138.95 | 754.68 | 1573.33 | 1553.00 | 12,078.19 | 335.18 | 272.34 | |
Marshland | 184.11 | 907.27 | 20,960.36 | 352.62 | 2495.31 | 2047.56 | 83.79 | 341.01 | |
Saline-alkali land | 85.34 | 1009.46 | 182.28 | 9475.64 | 79.85 | 428.57 | 72.87 | 44.02 | |
Irrigated agriculture | 17.89 | 50.58 | 143.55 | 1.45 | 15,637.93 | 1771.06 | 85.81 | 59.89 | |
Rainfed agriculture | 1125.04 | 785.28 | 269.10 | 97.49 | 8471.83 | 150,241.77 | 1312.20 | 291.33 | |
Settlement | 4.39 | 9.09 | 1.82 | 0.97 | 62.02 | 83.66 | 12,535.78 | 14.55 | |
Water | 42.88 | 363.54 | 439.18 | 534.21 | 400.38 | 548.47 | 19.46 | 13,789.24 |
Land Use Types | Percentage of the Total Area (%) | ||||
---|---|---|---|---|---|
Significant Reduction | Slight Reduction | Slight Increase | Significant Increase | Highly Significant Increase | |
Forest | 0.3 | 68.99 | 29.68 | 1 | 0.03 |
Grassland | 0.04 | 48.04 | 45.7 | 5.01 | 1.21 |
Marshland | 0 | 37.97 | 51.25 | 8.65 | 2.13 |
Saline-alkali land | 0.03 | 5.85 | 72.06 | 18.56 | 3.5 |
Parameters | ETn Model | |||
---|---|---|---|---|
Forest | Grassland | Marshland | Saline-Alkali Land | |
n_tree | 300 | 300 | 300 | 300 |
m_try | 7 | 7 | 7 | 6 |
max. depth | 10 | 10 | 10 | 7 |
min. node. size | 30 | 30 | 30 | 30 |
LULC | Area | ET1980 | ET2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
km2 | mm | mm | mm | 106 m3 | mm | 106 m3 | mm | 106 m3 | |
Forest–irrigated agriculture | 423.94 | 617.8 | 611.8 | −8.9 | 3.8 | 608.9 | 257.6 | 2.9 | 1.2 |
Forest–rainfed agriculture | 9818 | 528.3 | 548.0 | 18.8 | 184.6 | 547.1 | 5471.4 | 0.9 | 8.8 |
Grassland–irrigated agriculture | 1553 | 519.5 | 565.2 | −10.2 | 15.8 | 509.3 | 790.9 | 55.9 | 86.8 |
Grassland–rainfed agriculture | 12,078.19 | 485.8 | 535.9 | −3.4 | 41.1 | 482.4825 | 5826.5 | 53.4 | 645 |
Marshland–irrigated agriculture | 2495.31 | 521.6 | 572.5 | 21.8 | 23.9 | 543.4 | 1355.8 | 29.1 | 72.6 |
Marshland–rainfed agriculture | 2047.56 | 502.6 | 555.1 | 29.7 | 60.9 | 532.3 | 1090.1 | 22.8 | 46.7 |
SA–irrigated agriculture | 79.85 | 461.4 | 516.7 | 24.9 | 2 | 486.3 | 38.8 | 30.3 | 2.4 |
SA–rainfed agriculture | 428.57 | 476 | 510.1 | 20.9 | 9 | 496.9 | 213 | 13.2 | 5.6 |
LULC | ETn (mm) | Relative Error (%) | |
---|---|---|---|
RFR | XGBoost | ||
Forest–irrigated agriculture | 608.9 | 607.1 | 0.3 |
Forest–rainfed agriculture | 547.1 | 544.9 | 0.4 |
Grassland–irrigated agriculture | 509.3 | 511.4 | −0.41 |
Grassland–rainfed agriculture | 482.5 | 483.1 | −0.12 |
Marshland–irrigated agriculture | 543.4 | 540.2 | 0.59 |
Marshland–rainfed agriculture | 532.3 | 531.2 | 0.2 |
SA–irrigated agriculture | 486.3 | 483.9 | 0.49 |
SA–rainfed agriculture | 496.9 | 493.4 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Li, F.; Li, H.; Zhang, G.; Qi, P. A Framework for Separating Climate and Anthropogenic Contributions to Evapotranspiration Changes in Natural to Agricultural Regions of Watersheds Based on Machine Learning. Remote Sens. 2024, 16, 4408. https://doi.org/10.3390/rs16234408
Liang Z, Li F, Li H, Zhang G, Qi P. A Framework for Separating Climate and Anthropogenic Contributions to Evapotranspiration Changes in Natural to Agricultural Regions of Watersheds Based on Machine Learning. Remote Sensing. 2024; 16(23):4408. https://doi.org/10.3390/rs16234408
Chicago/Turabian StyleLiang, Zixin, Fengping Li, Hongyan Li, Guangxin Zhang, and Peng Qi. 2024. "A Framework for Separating Climate and Anthropogenic Contributions to Evapotranspiration Changes in Natural to Agricultural Regions of Watersheds Based on Machine Learning" Remote Sensing 16, no. 23: 4408. https://doi.org/10.3390/rs16234408
APA StyleLiang, Z., Li, F., Li, H., Zhang, G., & Qi, P. (2024). A Framework for Separating Climate and Anthropogenic Contributions to Evapotranspiration Changes in Natural to Agricultural Regions of Watersheds Based on Machine Learning. Remote Sensing, 16(23), 4408. https://doi.org/10.3390/rs16234408