An Enhanced Shuffle Attention with Context Decoupling Head with Wise IoU Loss for SAR Ship Detection
<p>Several typical examples of situations with small vessel targets and an inshore background.</p> "> Figure 2
<p>Overview of the proposed method’s structure. We used the backbone of YOLOv5 and neck of PAN for the network, while the shuffle attention module and Context Decoupled Head added in this paper are in the Attention Module and Context Decoupled Head part of this figure.</p> "> Figure 3
<p>The structure of the shuffle attention process.</p> "> Figure 4
<p>Semantic Context Encoding (SCE).</p> "> Figure 5
<p>Detail Preserving Encoding (DPE).</p> "> Figure 6
<p>Comparison figures of algorithm detection performance for SAR ship targets with various algorithms: (<b>a</b>) column represents the ground truth (GT), (<b>b</b>) column shows the performance of YOLOX algorithm, (<b>c</b>) column shows the performance of YOLOv5 as the baseline algorithm and (<b>d</b>) column displays the effectiveness of the proposed approach. Here the green box represents the targets of GT, while the red box represents the detected targets.</p> "> Figure 7
<p>Test results displayed in complex scenarios. The first row shows high noise conditions, where (<b>a</b>,<b>c</b>) are the ground truth, and (<b>b</b>,<b>d</b>) are the corresponding test results; the second row presents dense and small target situations, with (<b>e</b>,<b>g</b>) as the ground truth, and (<b>f</b>,<b>h</b>) as the corresponding test results; the third row illustrates complex scenarios with multiple scales, where (<b>i</b>,<b>k</b>) are the ground truth, and (<b>j</b>,<b>l</b>) are the corresponding test results. Here the green and the red box represents the target of GT and the detected target, while the yellow circle represents the missed or incorrect detection.</p> ">
Abstract
:1. Introduction
- 1.
- In order to enhance the effectiveness of the original decoupling head model, we design dedicated decoupling heads that align with the specific characteristics of positioning and semantic information.
- 2.
- To improve the model’s capability in detecting objects of varying scales, we incorporate a shuffle attention module into the larger feature layers of the original model’s neck.
- 3.
- To boost the accuracy of object detection, we utilize the Wise IoU loss function, which leverages attention-based bounding box regression loss and a dynamic non-monotonic focus mechanism.
- 4.
- To demonstrate the effectiveness of the proposed technique, we conduct extensive experiments using the HRSID dataset and the SAR-Ship-Dataset.
2. Methods
2.1. Network Architecture
2.2. Shuffle Attention Module
2.3. SAR Ship Context Decoupled Head
2.4. Wise IoU Loss
3. Experiment and Results
3.1. Experiment Setup
3.2. Dataset
3.2.1. HRSID
3.2.2. SAR-Ship-Dataset
3.2.3. Analysis of the Two Datasets
3.3. Evaluation Metrics
3.4. Ablation Study
3.5. Comparative Experiments
3.6. Comparison Experiment Visualization
3.7. Visualization of Test Results in Complex Situations
4. Discussion
4.1. Attention Mechanism
4.2. Decoupled Head
4.3. Wise IoU Loss
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote. Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Eldhuset, K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1010–1019. [Google Scholar] [CrossRef]
- Robey, F.C.; Fuhrmann, D.R.; Kelly, E.J.; Nitzberg, R. A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 1992, 28, 208–216. [Google Scholar] [CrossRef]
- Henschel, M.D.; Rey, M.T.; Campbell, J.W.M.; Petrovic, D. Comparison of probability statistics for automated ship detection in SAR imagery. In Proceedings of the International Conference on Applications of Photonic Technology III: Closing the Gap between Theory Development, and Applications, Ottawa, ON, Canada, 4 December 1998; pp. 986–991. [Google Scholar]
- Frery, C.; Müller, H.-J.; Yanasse, C.C.F.; Sant’Anna, S.J.S. A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 1997, 35, 648–659. [Google Scholar] [CrossRef]
- Schwegmann, P.; Kleynhans, W.; Salmon, B.P. Manifold adaptation for constant false alarm rate ship detection in South African oceans. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2015, 8, 3329–3337. [Google Scholar] [CrossRef]
- Qin, X.; Zhou, S.; Zou, H.; Gao, G. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 806–810. [Google Scholar]
- He, J.; Wang, Y.; Liu, H.; Wang, N.; Wang, J. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement. IEEE Geosci. Remote Sens. Lett. 2018, 15, 384–388. [Google Scholar] [CrossRef]
- Colone, F.; Filippini, F.; Pastina, D. Passive Radar: Past, Present, and Future Challenges. IEEE Aerosp. Electron. Syst. Mag. 2023, 38, 54–69. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep Learning for SAR Ship Detection: Past, Present and Future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA; 2017; pp. 936–944. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra R-CNN: Towards Balanced Learning for Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Li, Z.; Peng, C.; Yu, G.; Zhang, X.Y.; Deng, Y.D.; Sun, J. Light-head r-cnn: In defense of two-stage object detector. arXiv 2017, arXiv:1711.07264. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 jULY 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Law, H.; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. Int. J. Comput. Vis. 2018, 128, 642–656. [Google Scholar] [CrossRef]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6568–6577. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934,. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. MixUp: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Jocher, G.; Nishimura, K.; Mineeva, T.; Vilariño, R.; YOLOv5 by Ultralytics. Code Repository. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 4 October 2022).
- Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the Sar in Big Data Era: Models, Methods & Applications, Beijing, China, 13–14 November 2017. [Google Scholar]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S.L. A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds. Remote Sens. 2019, 11, 765. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 2031. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Gao, G.; Lang, H.; Liu, G.; Cao, C.; Song, Y.; Guan, Y.; Dai, Y. Development and Application of Ship Detection and Classification Datasets: A Review. IEEE Geosci. Remote Sens. Mag. 2024, 2–36. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H.; Zhang, C.; Fu, Q. Combing Single Shot Multibox Detector with transfer learning for ship detection using Chinese Gaofen-3 images. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, 19–22 November 2017. [Google Scholar]
- Khan, H.M.; Cai, Y. Ship detection in SAR Image using YOLOv2. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018. [Google Scholar]
- Lin, Z.; Ji, K.; Leng, X.; Kuang, G. Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 751–755. [Google Scholar] [CrossRef]
- Zhao, W.; Syafrudin, M.; Fitriyani, N.L. CRAS-YOLO: A Novel Multi-Category Vessel Detection and Classification Model Based on YOLOv5s Algorithm. IEEE Access 2023, 11, 11463–11478. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, G.; Xin, Z.; Liao, G.; Huang, P.; Tai, Y. Detection of SAR Image Multiscale Ship Targets in Complex Inshore Scenes Based on Improved YOLOv5. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5804–5823. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, D.; Shi, F. A Decoupled Head and Coordinate Attention Detection Method for Ship Targets in SAR Images. IEEE Access 2022, 10, 128562–128578. [Google Scholar] [CrossRef]
- Tang, H.; Gao, S.; Li, S.; Wang, P.; Liu, J.; Wang, S.; Qian, J. A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7. Remote Sens. 2024, 16, 486. [Google Scholar] [CrossRef]
- Bai, L.; Yao, C.; Ye, Z.; Xue, D.; Lin, X.; Hui, M. A Novel Anchor-Free Detector Using Global Context-Guide Feature Balance Pyramid and United Attention for SAR Ship Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4003005. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, Z.; Chen, Z.; Liu, G. Object-Enhanced YOLO Networks for Synthetic Aperture Radar Ship Detection. Remote Sens. 2024, 16, 1001. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, S.; Liu, S. BANet: A Balance Attention Network for Anchor-Free Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5222212. [Google Scholar] [CrossRef]
- Ren, X.; Bai, Y.; Liu, G.; Zhang, P. YOLO-Lite: An Efficient Lightweight Network for SAR Ship Detection. Remote Sens. 2023, 15, 3771. [Google Scholar] [CrossRef]
- Xu, Z.; Zhai, J.; Huang, K.; Liu, K. DSF-Net: A Dual Feature Shuffle Guided Multi-Field Fusion Network for SAR Small Ship Target Detection. Remote Sens. 2023, 15, 4546. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, X.; Liu, N.; Cao, Z.; Yang, J. Ship Detection in Large-Scale SAR Images Via Spatial Shuffle-Group Enhance Attention. IEEE Trans. Geosci. Remote Sens. 2021, 59, 379–391. [Google Scholar] [CrossRef]
- Cai, S.; Meng, H.; Yuan, M.; Wu, J. FS-YOLO: A multi-scale SAR ship detection network in complex scenes. Signal Image Video Process. 2024, 18, 5017–5027. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Ai, J.; Zou, H.; Li, J. Global and Local Context-Aware Ship Detector for High-Resolution SAR Images. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4159–4167. [Google Scholar] [CrossRef]
- Cheng, P. Improve the Performance of SAR Ship Detectors by Small Object Detection Strategies. Remote Sens. 2024, 16, 3338. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, G.; Chen, S.-W. Polarimetric Autocorrelation Matrix: A New Tool for Joint Characterizing of Target Polarization and Doppler Scattering Mechanism. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5213522. [Google Scholar] [CrossRef]
- Gao, G.; Bai, Q.; Zhang, C.; Zhang, L.; Yao, L. Dualistic Cascade Convolutional Neural Network Dedicated to Fully PolSAR Image Ship Detection. ISPRS J. Photogramm. Remote Sens. 2023, 202, 663–681. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, G.; Liu, J.; Duan, D. Oriented Ship Detection Based on Soft Thresholding and Context Information in SAR Images of Complex Scenes. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5200615. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5205516. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Qu, L.; Cai, J.; Fang, J. A Spatial Cross-Scale Attention Network and Global Average Accuracy Loss for SAR Ship Detection. Remote Sens. 2023, 15, 350. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Chen, F.; Shang, E.; Yao, W.; Zhang, S.; Yang, J. YOLOv7oSAR: A Lightweight High-Precision Ship Detection Model for SAR Images Based on the YOLOv7 Algorithm. Remote Sens. 2024, 16, 913. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Filaretov, V.F.; Yukhimets, D.A. Multi-Scale Ship Detection Algorithm Based on YOLOv7 for Complex Scene SAR Images. Remote Sens. 2023, 15, 2071. [Google Scholar] [CrossRef]
- Yu, W.; Wang, Z.; Li, J.; Luo, Y.; Yu, Z. A Lightweight Network Based on One-Level Feature for Ship Detection in SAR Images. Remote Sens. 2022, 14, 3321. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhang, Q.-L.; Yang, Y.-B. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2235–2239. [Google Scholar] [CrossRef]
- Zhuang, J.; Qin, Z.; Yu, H.; Chen, X. Task-Specific Context Decoupling for Object Detection. arXiv 2023, arXiv:2303.01047. [Google Scholar]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
Experiment Details | |
---|---|
PyTorch Version | 1.13.1 |
CUDA Version | 12.0 |
GPU | NVIDIA Quadro P5000 |
Operating System | Windows 10 |
Batch Size (HRSID) | 64 |
Batch Size (SAR-Ship-Dataset) | 16 |
Baseline | +Wise IoU Loss | +Shuffle Attention | +Context Decoupled Head | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|---|---|---|
✓ | 91.4 | 86.5 | 88.9 | 93.4 | 68.1 | |||
✓ | ✓ | 91.4 | 87.5 | 89.4 | 93.8 (+0.4) | 69.5 | ||
✓ | ✓ | 92.2 | 87.3 | 89.7 | 93.8 (+0.4) | 69.3 | ||
✓ | ✓ | 92.3 | 88.3 | 90.3 | 94.1 (+0.7) | 70.7 | ||
✓ | ✓ | ✓ | 92.8 | 88.0 | 90.4 | 94.2 (+0.8) | 70.5 | |
✓ | ✓ | ✓ | 92.3 | 88.9 | 90.6 | 94.3 (+0.9) | 71.3 | |
✓ | ✓ | ✓ | 92.5 | 88.7 | 90.6 | 94.3 (+0.9) | 71.1 | |
✓ | ✓ | ✓ | ✓ | 92.4 | 89.4 | 91.0 | 94.5 (+1.1) | 72.1 |
Baseline | +Wise IoU Loss | +Shuffle Attention | +Context Decoupled Head | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|---|---|---|
✓ | 90.6 | 89.8 | 90.3 | 94.7 | 56.1 | |||
✓ | ✓ | 90.7 | 90.2 | 90.5 | 95.0 (+0.3) | 56.5 | ||
✓ | ✓ | 91.2 | 89.7 | 90.4 | 94.9 (+0.2) | 56.6 | ||
✓ | ✓ | 91.9 | 90.4 | 91.1 | 95.1 (+0.4) | 57.1 | ||
✓ | ✓ | ✓ | 91.5 | 89.7 | 90.6 | 95.2 (+0.5) | 56.9 | |
✓ | ✓ | ✓ | 92.0 | 90.5 | 91.2 | 95.3 (+0.6) | 57.7 | |
✓ | ✓ | ✓ | 92.2 | 90.3 | 91.2 | 95.2 (+0.5) | 57.4 | |
✓ | ✓ | ✓ | ✓ | 92.5 | 90.5 | 91.5 | 95.5 (+0.8) | 58.3 |
Method | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|
Faster R-CNN | 81.7 | 81.6 | 81.6 | 84.1 | 53.4 |
SSD | 86.3 | 80.8 | 83.5 | 87.1 | 57.8 |
YOLOv3 | 91.5 | 85.7 | 88.5 | 92.7 | 66.5 |
CenterNet | 90.1 | 84.3 | 87.1 | 91.4 | 63.1 |
CenterNet+SSE | 91.1 | 86.2 | 88.6 | 93.0 | 65.0 |
YOLOv4 | 91.1 | 85.9 | 88.4 | 92.9 | 67.2 |
YOLOv5 | 91.4 | 86.4 | 88.9 | 93.4 | 68.1 |
FS-YOLO | 92.0 | 87.1 | 89.5 | 93.7 | 68.6 |
GLC-DET | 91.6 | 87.9 | 89.7 | 93.9 | 69.0 |
YOLOX | 92.7 | 86.6 | 89.5 | 93.1 | 67.7 |
S2D | 92.7 | 87.6 | 90.1 | 94.0 | 69.7 |
Proposed Method | 92.4 | 89.4 | 90.9 | 94.5 | 72.1 |
Method | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|
Faster R-CNN | 85.2 | 88.1 | 86.6 | 90.6 | 47.2 |
SSD | 87.3 | 87.7 | 87.5 | 92.3 | 49.8 |
YOLOv3 | 89.8 | 88.7 | 89.2 | 93.9 | 54.4 |
CenterNet | 88.1 | 87.9 | 88.0 | 92.6 | 54.2 |
CenterNet+SSE | 89.3 | 88.4 | 88.8 | 93.5 | 55.1 |
YOLOv4 | 90.2 | 89.3 | 89.7 | 94.2 | 55.4 |
YOLOv5 | 90.6 | 89.8 | 90.2 | 94.7 | 56.1 |
FS-YOLO | 91.2 | 90.0 | 90.6 | 94.9 | 56.9 |
GLC-DET | 92.0 | 89.7 | 90.8 | 95.0 | 57.1 |
YOLOX | 90.7 | 90.2 | 90.4 | 94.4 | 56.6 |
S2D | 91.4 | 90.3 | 90.8 | 95.0 | 57.4 |
Proposed Method | 92.5 | 90.3 | 91.5 | 95.4 | 58.3 |
Method | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|
+SE | 93.7 | 87.4 | 90.4 | 94.1 | 71.5 |
+CBAM | 92.7 | 87.7 | 90.1 | 94.2 | 71.2 |
+ECA | 93.1 | 87.6 | 90.3 | 94.1 | 71.1 |
+Coordinate attention | 93.2 | 86.9 | 89.9 | 94.3 | 71.3 |
+sim attention | 92.5 | 87.2 | 89.8 | 94.1 | 70.9 |
+shuffle attention | 92.4 | 89.4 | 90.9 | 94.5 | 72.1 |
Method | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|
+SE | 91.7 | 89.6 | 90.6 | 94.8 | 56.7 |
+CBAM | 91.8 | 89.6 | 90.7 | 94.9 | 57.3 |
+ECA | 91.9 | 89.8 | 90.8 | 95.1 | 56.7 |
+Coordinate attention | 91.2 | 90.1 | 90.7 | 94.8 | 56.4 |
+Sim attention | 92.3 | 90.2 | 91.2 | 95.2 | 58.0 |
+Shuffle attention | 92.5 | 90.5 | 91.5 | 95.5 | 58.3 |
Method | Pre (%) | Rec (%) | AP50 (%) | AP50-95 (%) | GFLOPs |
---|---|---|---|---|---|
+simple decoupled head | 91.6 | 88.4 | 94.2 | 70.1 | 7.1 |
+Context Decoupled head | 92.4 | 89.4 | 94.5 | 72.1 | 9.8 |
Method | Pre (%) | Rec (%) | AP50 (%) | AP50-95 (%) | GFLOPs |
---|---|---|---|---|---|
+simple decoupled head | 91.3 | 90.2 | 94.8 | 57.1 | 7.1 |
+Context Decoupled head | 92.5 | 90.5 | 95.5 | 58.3 | 9.8 |
Method | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|
Baseline (CIoU Loss) | 91.4 | 86.5 | 88.9 | 93.4 | 68.1 |
+Wise IoU Loss | 91.4 | 87.5 | 89.4 | 93.8 (+0.4) | 69.5 |
Method | Precision (%) | Recall (%) | F1 Score (%) | AP50 (%) | AP50-95 (%) |
---|---|---|---|---|---|
Baseline (CIoU Loss) | 90.6 | 89.8 | 90.3 | 94.7 | 56.1 |
+Wise IoU Loss | 90.7 | 90.2 | 90.5 | 95.0 (+0.3) | 56.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Zhang, Y.; Xiao, J.; Cao, Y.; Yu, Z. An Enhanced Shuffle Attention with Context Decoupling Head with Wise IoU Loss for SAR Ship Detection. Remote Sens. 2024, 16, 4128. https://doi.org/10.3390/rs16224128
Tang Y, Zhang Y, Xiao J, Cao Y, Yu Z. An Enhanced Shuffle Attention with Context Decoupling Head with Wise IoU Loss for SAR Ship Detection. Remote Sensing. 2024; 16(22):4128. https://doi.org/10.3390/rs16224128
Chicago/Turabian StyleTang, Yunshan, Yue Zhang, Jiarong Xiao, Yue Cao, and Zhongjun Yu. 2024. "An Enhanced Shuffle Attention with Context Decoupling Head with Wise IoU Loss for SAR Ship Detection" Remote Sensing 16, no. 22: 4128. https://doi.org/10.3390/rs16224128
APA StyleTang, Y., Zhang, Y., Xiao, J., Cao, Y., & Yu, Z. (2024). An Enhanced Shuffle Attention with Context Decoupling Head with Wise IoU Loss for SAR Ship Detection. Remote Sensing, 16(22), 4128. https://doi.org/10.3390/rs16224128