Multiple-Input Multiple-Output Microwave Tomographic Imaging for Distributed Photonic Radar Network
"> Figure 1
<p>Radar network configuration at Livorno harbor, Italy. RP1 and RP2 indicate the locations of the active radar peripherals. The green and yellow triangles represent, approximately, the antenna viewing angles.</p> "> Figure 2
<p>Block diagram of the signal processing pipeline.</p> "> Figure 3
<p>A range–Doppler map related to an experimental test. The white and red ellipses show the contributions from static and moving targets, respectively.</p> "> Figure 4
<p>Geometry of the radar imaging problem.</p> "> Figure 5
<p>RD maps (normalized amplitude in dB) for each radar channel and Acquisition 1: RP1-RP1 (<b>a</b>), RP1-RP2 (<b>b</b>), RP2-RP1 (<b>c</b>), RP2-RP2 (<b>d</b>).</p> "> Figure 6
<p>Pictures of the target under test: picture of the lighthouse representing the main scattering static object in the observed scene (<b>a</b>); picture of the Cruise Sardegna ferry and its daily route in the harbor represented by the white line (source: Google Earth) (<b>b</b>).</p> "> Figure 7
<p>Tomographic reconstructions of the static target for Acquisition 1 in a local coordinate system (<b>a</b>,<b>b</b>) against a heat colormap scale with a [−3, 0] dB range. Reconstructions in a geographic coordinate system against a jet colormap scale with a [−3, 0] dB range (<b>c</b>,<b>d</b>). MIMO-MWT imaging results achieved through the MIMO-MWT-incoherent approach (left panel (<b>a</b>,<b>c</b>)) and MIMO-MWT-coherent approach (right panel (<b>b</b>,<b>d</b>)). The green and yellow dots represent the locations of the radar nodes RP1 and RP2, while the red circle denotes the location of the lighthouse.</p> "> Figure 8
<p>Zoomed-in sections of the RD map (normalized amplitude in dB) for each radar channel and Acquisition 1: RP1-RP1 (<b>a</b>), RP1-RP2 (<b>b</b>), RP2-RP1 (<b>c</b>), RP2-RP2 (<b>d</b>).</p> "> Figure 9
<p>Imaging reconstruction by MIMO-MWT shown in a local coordinate system against a heat colormap scale with a [−3, 0] db range: channel TX1-RX1 (<b>a</b>); channel TX1-RX2 (<b>b</b>); channel TX2-RX1 (<b>c</b>); channel TX2-RX2 (<b>d</b>); MIMO incoherent imaging (<b>e</b>); MIMO coherent imaging (<b>f</b>).</p> "> Figure 10
<p>Georeferenced tomographic imaging reconstructions of the moving target for Acquisition frames 1–8 (<b>a</b>–<b>h</b>). These images were obtained using the MIMO-MWT-incoherent approach.</p> "> Figure 11
<p>Georeferenced tomographic imaging reconstructions of the moving target for Acquisition frames 1–8 (<b>a</b>–<b>h</b>). These images were obtained using the MIMO-MWT coherent approach.</p> ">
Abstract
:1. Introduction
2. Description of MIMO Radar Systems
3. Signal Processing Procedure
3.1. Pre-Processing Stage
3.2. MWT Focusing Stage
3.2.1. Incoherent Focusing
3.2.2. Coherent Focusing
4. Experimental Validation
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Stoica, P. MIMO Radar Signal Processing; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- O’Hagan, D.W.; Doughty, S.R.; Inggs, M.R. Chapter 5—Multistatic Radar Systems. In Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering; Chellappa, R., Theodoridis, S., Eds.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2018; pp. 253–275. [Google Scholar]
- Li, J.; Stoica, P. MIMO Radar with Colocated Antennas. IEEE Signal Process. Mag. 2007, 24, 106–114. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO Radar with Widely Separated Antennas. IEEE Signal Process. Mag. 2007, 25, 116–129. [Google Scholar] [CrossRef]
- Skolnik, M.I. Introduction to Radar. Radar Handb. 1962, 2, 21. [Google Scholar]
- Noviello, C.; Braca, P.; Maresca, S. Chapter 5—Radar Networks. In Photonics for Radar Networks and Electronic Warfare Systems; SciTech Publishing, Inc.: Raleigh, NC, USA, 2019; p. 111. [Google Scholar]
- Wang, X.; Guo, Y.; Wen, F.; He, J.; Truong, T.K. EMVS-MIMO radar with sparse Rx geometry: Tensor modeling and 2D direction finding. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8062–8075. [Google Scholar] [CrossRef]
- Zhou, S.; Zang, H.; Wang, J.; Liu, H.; Xu, L.; Su, H. MIMO for conformal array radar: More than an option. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 350–353. [Google Scholar]
- Vasanelli, C.; Meinecke, B.; Mayer, J.; Elsayad, O.; Hügler, P.; Roos, F.; Zwick, T.; Waldschmidt, C. Characterization of mm-Wave Conformal Antenna Arrays for a 3×8 MIMO Radar. In Proceedings of the 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 9–13 September 2019; pp. 0167–0171. [Google Scholar]
- Wen, F.; Shi, J.; Lin, Y.; Gui, G.; Yuen, C.; Sari, H. Joint DOD and DOA Estimation for NLOS Target Using IRS-aided Bistatic MIMO Radar. IEEE Trans. Veh. Technol. 2024, 73, 15798–15802. [Google Scholar] [CrossRef]
- Alhuwaimel, S.; Coetzee, S.; Cheng, P.; Du Plessis, D.; Fioranelli, F.; Griffiths, H.; Inggs, M.R.; Jordan, D.; Miceli, W.; O’Hagan, D.; et al. First Measurements with NeXtRAD, a Polarimetric X/L Band Radar Network. In Proceedings of the International Conference, IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 1663–1668. [Google Scholar]
- Inggs, M.R.; Lewis, S.; Palamà, R.; Ritchie, M.A.; Griffiths, H. Report on the 2018 Trials of the Multistatic NeXtRAD Dual Band Polarimetric Radar. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019. [Google Scholar]
- Akcakaya, M.; Nehorai, A. MIMO radar detection under phase synchronization errors. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; pp. 2578–2581. [Google Scholar]
- Inggs, M.; Griffiths, H.; Fioranelli, F.; Ritchie, M.; Woodbridge, K. Multistatic Radar: System Requirements and Experimental Validation. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar]
- Sandenbergh, J.S.; Inggs, M.R. A Summary of the Results Achieved by the GPS Disciplined References of the NetRAD and NeXtRAD Multistatic Radars. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019. [Google Scholar]
- Beasley, P.; Ritchie, M.; Griffiths, H.; Miceli, W.; Inggs, M.; Lewis, S.; Kahn, B. Multistatic Radar Measurements of UAVs at X-band and L-band. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar]
- Klare, J.; Saalmann, O. MIRA-CLE X: A New Imaging MIMO-Radar for Multi-Purpose Applications. In Proceedings of the 7th European Radar Conference, Paris, France, 30 September–1 October 2010; pp. 129–132. [Google Scholar]
- Klare, J.; Biallawons, O.; Cerutti-Maori, D. UAV Detection with MIMO radar. In Proceedings of the 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017; pp. 1–8. [Google Scholar]
- Tarchi, D.; Oliveri, F.; Sammartino, P.F. MIMO Radar and Ground-Based SAR Imaging Systems: Equivalent Approaches for Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 425–435. [Google Scholar] [CrossRef]
- Yang, F.; Qu, K.; Hao, M.; Liu, Q.; Chen, X.; Xu, F. Practical Investigation of a MIMO Radar System Capabilities for Small Drones Detection. IET Radar Sonar Navig. 2021, 15, 760–774. [Google Scholar] [CrossRef]
- Serafino, G.; Maresca, S.; Di Mauro, L.; Tardo, A.; Cuillo, A.; Scotti, F.; Bogoni, A. A Photonics-Assisted Multi-Band MIMO Radar Network for the Port of the Future. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 6000413. [Google Scholar] [CrossRef]
- Pandey, G.; Scaffardi, M.; Maresca, S.; Amir, M.H.; Bogoni, A.; Malacarne, A. Coherent Multi-Band MIMO Radar: Robustness Analysis to SSMF-Based RF Signal Delivery. Opt. Lett. 2024, 49, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, L.; Dres, D.; Protopapadakis, E.; Lamole, F.; Jacquin, F.; Rigal, G.; Ouzounoglou, E.; Katsaros, D.; Karalis, A.; Pierno, L.; et al. RANGER: Radars and Early Warning Technologies for Long Distance Maritime Surveillance. 2019. Available online: https://www.theseus.fi/handle/10024/266999 (accessed on 20 October 2024).
- ROBORDER: Autonomous Swarm of Heterogeneous RObots for BORDER Surveillance. Available online: https://cordis.europa.eu/project/id/740593 (accessed on 20 October 2024).
- Pastorino, M. Microwave Imaging; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Noghanian, S.; Sabouni, A.; Desell, T.; Ashtari, A. Microwave Tomography; Springer: New York, NY, USA, 2014. [Google Scholar]
- Maresca, S.; Serafino, G.; Noviello, C.; Scotti, F.; Fornaro, G.; Sansosti, E.; Ghelfi, P. Field Trial of a Coherent, Widely Distributed, Dual-Band Photonics-Based MIMO Radar with ISAR Imaging Capabilities. IEEE J. Light. Technol. 2022, 40, 6626–6635. [Google Scholar] [CrossRef]
- Catapano, I.; Gennarelli, G.; Ludeno, G.; Noviello, C.; Esposito, G.; Soldovieri, F. Contactless Ground Penetrating Radar Imaging: State of the Art, Challenges, and Microwave Tomography-Based Data Processing. IEEE Geosci. Remote Sens. Mag. 2021, 10, 251–273. [Google Scholar] [CrossRef]
- Gennarelli, G.; Soldovieri, F. A Linear Inverse Scattering Algorithm for Radar Imaging in Multipath Environments. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1085–1089. [Google Scholar] [CrossRef]
- Gennarelli, G.; Riccio, G.; Solimene, R.; Soldovieri, F. Radar Imaging Through a Building Corner. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6750–6761. [Google Scholar] [CrossRef]
- Catapano, I.; Gennarelli, G.; Esposito, G.; Ludeno, G.; Su, Y.; Zhang, Z.; Soldovieri, F. Contactless Microwave Tomography via MIMO GPR. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3502505. [Google Scholar] [CrossRef]
- Chew, W.C. Waves and Fields in Inhomogeneous Media; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 1995. [Google Scholar]
- Bertero, M.; Boccacci, P. Introduction to Inverse Problems in Imaging; Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 1998. [Google Scholar]
- Hansen, P.C. Discrete Inverse Problems: Insight and Algorithms; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Richards, M.A.; Sheer, L.; Holm, W.A. Principles of Modern Radar; SciTech Publishing, Inc.: Raleigh, NC, USA, 2010. [Google Scholar]
- Noviello, C.; Fornaro, G.; Martorella, M. Focused SAR Image Formation of Moving Targets Based on Doppler Parameter Estimation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3460–3470. [Google Scholar] [CrossRef]
- Gennarelli, G.; Vivone, G.; Braca, P.; Soldovieri, F.; Amin, M.G. Comparative Analysis of two Approaches for Multipath Ghost Suppression in Radar Imaging. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1226–1230. [Google Scholar] [CrossRef]
Parameter | Description/Value | |
---|---|---|
RP1 | Latitude Longitude Altitude | 43°33′12.24″N 10°17′51.89″E 5 m |
RP2 | Latitude Longitude Altitude | 43°33′12.24″N 10°17′51.89″E 5 m |
Waveform | Linear-frequency-modulated chirp | |
Pulse duration | 2 µs | |
S-band carrier frequency | 2.9 GHz | |
X-band carrier frequency | 9.7 GHz | |
Operative bandwidth | 100 MHz | |
Pulse repetition frequency | 20 kHz | |
Sampling frequency | 400 MHz | |
No. of TXs/RXs (channels) | 2 × 2 (2 monostatic, 2 bistatic) |
Acquisition No. | Local Time |
---|---|
1 | 11:01:00 AM |
2 | 11:01:34 AM |
3 | 11:01:45 AM |
4 | 11:01:52 AM |
5 | 11:01:58 AM |
6 | 11:02:05 AM |
7 | 11:02:55 AM |
8 | 11:03:01 AM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noviello, C.; Maresca, S.; Gennarelli, G.; Malacarne, A.; Scotti, F.; Ghelfi, P.; Soldovieri, F.; Catapano, I.; Scapaticci, R. Multiple-Input Multiple-Output Microwave Tomographic Imaging for Distributed Photonic Radar Network. Remote Sens. 2024, 16, 3940. https://doi.org/10.3390/rs16213940
Noviello C, Maresca S, Gennarelli G, Malacarne A, Scotti F, Ghelfi P, Soldovieri F, Catapano I, Scapaticci R. Multiple-Input Multiple-Output Microwave Tomographic Imaging for Distributed Photonic Radar Network. Remote Sensing. 2024; 16(21):3940. https://doi.org/10.3390/rs16213940
Chicago/Turabian StyleNoviello, Carlo, Salvatore Maresca, Gianluca Gennarelli, Antonio Malacarne, Filippo Scotti, Paolo Ghelfi, Francesco Soldovieri, Ilaria Catapano, and Rosa Scapaticci. 2024. "Multiple-Input Multiple-Output Microwave Tomographic Imaging for Distributed Photonic Radar Network" Remote Sensing 16, no. 21: 3940. https://doi.org/10.3390/rs16213940
APA StyleNoviello, C., Maresca, S., Gennarelli, G., Malacarne, A., Scotti, F., Ghelfi, P., Soldovieri, F., Catapano, I., & Scapaticci, R. (2024). Multiple-Input Multiple-Output Microwave Tomographic Imaging for Distributed Photonic Radar Network. Remote Sensing, 16(21), 3940. https://doi.org/10.3390/rs16213940