Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim
"> Figure 1
<p>Geographical location of South Lhonak Lake and digital elevation model (DEM) of this area. The rectangle marked with the track number indicates the coverage area of the ascending and descending SAR images. The region outlined by the blue rectangle is the primary research area of this paper.</p> "> Figure 2
<p>Main workflow of InSAR surface deformation analysis tool based on the cloud platform.</p> "> Figure 3
<p>The primary workflow of GPU-assisted full-resolution InSAR fast time-series analysis. The figure is adapted from Duan et al. [<a href="#B19-remotesensing-16-02307" class="html-bibr">19</a>].</p> "> Figure 4
<p>Spatial and temporal baseline configuration of Sentinel-1 datasets. (<b>a</b>) Ascending (Track 12) images prior to the disaster; (<b>b</b>) descending (Track 48) images prior to the disaster; (<b>c</b>) descending (Track 48) images after the disaster.</p> "> Figure 5
<p>The average LOS deformation rate of the surface surrounding South Lhonak Lake before the disaster. The dashed red line delineates the landslide area, and points P1–P4 were selected for further analysis of the time-series deformation within this area before the GLOF. (<b>a</b>) Derived from ascending (Track 12) images. (<b>b</b>) Derived from descending (Track 48) images.</p> "> Figure 6
<p>Time-series deformation of selected points (P1–P4) before the disaster. (<b>a</b>) Ascending (Track 12); (<b>b</b>) descending (Track 48). There is no deformation point near P4 in the deformation results obtained from the descending images.</p> "> Figure 7
<p>GF-2 images of South Lhonak Lake and its surroundings. (<b>a</b>) Prior to the GLOF; (<b>b</b>) after the GLOF.</p> "> Figure 8
<p>Further enlarged GF-2 images focused on the landslide area. (<b>a</b>) Prior to the landslide; (<b>b</b>) after the landslide.</p> "> Figure 9
<p>The monthly average rainfall of North Sikkim from 2018 to 2022 and five-year average rainfall.</p> "> Figure 10
<p>Landsat optical images covering the South Lhonak Lake region from January 2021 to October 2023. The red dashed line delineates the extent of the landslide and floating debris, based on GF-2 image.</p> "> Figure 11
<p>The correlation between the time-series deformation of point P1 derived from the descending images of Sentinel-1 before the disaster and the variation in the area of South Lhonak Lake from January 2021 to July 2023.</p> "> Figure 12
<p>Slope map of the study area calculated by NASADEM HGT v001, where the dashed blue line represents the pre-disaster lake contour outlined using Landsat 8 images acquired on 25 June 2023, and the solid red line delineates the extent of the landslide.</p> "> Figure 13
<p>The LOS average deformation rate around South Lhonak Lake after the GLOF was calculated using the Sentinel-1 SLC data from October 2023 to March 2024 from the descending track. The yellow line delineates the landslide area, and points P5–P10 were selected for further analysis of the time-series deformation within this area after the GLOF.</p> "> Figure 14
<p>Time-series deformation of selected points obtained from descending images after the GLOF. (<b>a</b>) P5–P7; (<b>b</b>) P8–P10.</p> ">
Abstract
:1. Introduction
2. Study Setting
3. Data and Method
3.1. Data
3.1.1. SAR Images
3.1.2. Optical Images
3.2. InSAR Calculation in Cloud Platform
3.2.1. GPU-Assisted InSAR Processing Module
3.2.2. Automated Full-Resolution Fast InSAR Time-Series Analysis Method
- Employ the small baseline principle to select interferometric pairs and generate the optimal interferometry network [40].
- Calculate burst offsets between each image and the reference image, generating a burst offset file and determining the burst offsets of each slave image based on the AOI of the reference image.
- Automatically download the corresponding orbit auxiliary files and external DEM files. SRTM DEM with a resolution of 30 m was utilized to subsequently mitigate terrain phase effects.
- Utilize GPU to accelerate the generation of differential interferograms; details of GPU-accelerated InSAR processing are available in Section 3.2.1. Subsequently, all generated differential interferograms are resampled based on the registration parameters to ensure consistency with the SAR coordinate system of the reference image.
- Image cutting. Interferograms are cropped according to the specified range of the AOI.
- SHPS phase filtering and phase unwrapping. Utilize the SHPS algorithm to reduce noise in the interferograms while preserving the spatial resolution of SAR images. Coherent points surrounding each reference pixel are selected, aiming to retain interferogram details while eliminating phase noise from incoherent and low-coherence areas. Then, phase unwrapping of interferograms was achieved using minimum cost flow (MCF) networks [41].
- Corrections for orbital error and terrain-related atmospheric delay errors.
- Time-series analysis in SAR coordinate system. With high-pass and low-pass filters, the average deformation rate is calculated using the linear least squares (LS) method. Subsequently, a time-series analysis is performed. The InSAR time-series analysis module follows the traditional method, employing the Small Baseline Subset method to derive deformation time series through the singular value decomposition (SVD) algorithm [6].
4. Results and Analysis
4.1. Analysis of InSAR Deformation Results
4.2. Optical Image Analysis
5. Discussion
5.1. Correlation between InSAR Deformation Results and Multiple Factors
5.1.1. Rainfall Factor
5.1.2. Lake Area Factor
5.1.3. Slope Factor
5.2. Possible Causes of Landslide and GLOF
5.3. Secondary Landslide Risk
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Change 2011, 75, 47–55. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Change 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Klimes, J.; Novotny, J.; Novotna, I.; Jordan de Urries, B.; Vilimek, V.; Emmer, A.; Strozzi, T.; Kusak, M.; Cochachin Rapre, A.; Hartvich, F.; et al. Landslides in moraines as triggers of glacial lake outburst floods: Example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides 2016, 13, 1461–1477. [Google Scholar] [CrossRef]
- Wilson, R.; Harrison, S.; Reynolds, J.; Hubbard, A.; Glasser, N.F.; Wundrich, O.; Anacona, P.I.; Mao, L.; Shannon, S. The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology 2019, 332, 51–65. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Strozzi, T.; Wiesmann, A.; Caduff, R.; Frey, H.; Huggel, C.; Kääb, A.; Cochachin, A. Integration of satellite radar interferometry into a GLOF early warning system: A pilot study from the Andes of Peru. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 12–17 April 2015; p. 2270. [Google Scholar]
- Scapozza, C.; Ambrosi, C.; Cannata, M.; Strozzi, T. Glacial lake outburst flood hazard assessment by satellite Earth observation in the Himalayas (Chomolhari area, Bhutan). Geogr. Helv. 2019, 74, 125–139. [Google Scholar] [CrossRef]
- Yang, L.; Lu, Z.; Zhao, C.; Kim, J.; Yang, C.; Wang, B.; Liu, X.; Wang, Z. Analyzing the triggering factors of glacial lake outburst floods with SAR and optical images: A case study in Jinweng Co, Tibet, China. Landslides 2022, 19, 855–864. [Google Scholar] [CrossRef]
- Yang, L.; Lu, Z.; Ouyang, C.; Zhao, C.; Hu, X.; Zhang, Q. Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS. Remote Sens. 2023, 15, 5327. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, X.; Deng, Y.; Zou, C.; Feng, Z.; Djukem, D.L.W.; Wei, T.; Dou, X.; Xu, Q. Combining geophysics, remote sensing and numerical simulation to assess GLOFs: Case study of the Namulacuo Lake in the Southeastern Tibetan Plateau. Sci. Total Environ. 2023, 880, 163262. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Li, Y.; Li, B.; Li, H. Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta. Sustainability 2022, 14, 10597. [Google Scholar] [CrossRef]
- Xu, H.; Man, Y.; Yang, M.; Wu, J.; Zhang, Q.; Wang, J. Analytical Insight of Earth: A Cloud-Platform of Intelligent Computing for Geospatial Big Data. arXiv Prepr. 2023, arXiv:2312.16385. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Zhang, J. A time series processing chain for geological disasters based on a GPU-assisted sentinel-1 InSAR processor. Nat. Hazards 2022, 111, 803–815. [Google Scholar] [CrossRef]
- Kannadasan, R.; Prabakaran, N.; Boominathan, P.; Krishnamoorthy, A.; Naresh, K.; Sivashanmugam, G. High Performance Parallel Computing with Cloud Technologies. Procedia Comput. Sci. 2018, 132, 518–524. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, H.; Chen, X. Research on Key Technologies of Cloud Computing. In Proceedings of the International Conference on Medical Physics and Biomedical Engineering (ICMPBE), Qingdao, China, 8–9 September 2012; pp. 1791–1797. [Google Scholar] [CrossRef]
- Soni, D.; Kumar, N. Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy. J. Netw. Comput. Appl. 2022, 205, 103419. [Google Scholar] [CrossRef]
- Duan, H.; Li, Y.; Jiang, H.; Li, Q.; Jiang, W.; Tian, Y.; Zhang, J. Retrospective monitoring of slope failure event of tailings dam using InSAR time-series observations. Nat. Hazards 2023, 117, 2375–2391. [Google Scholar] [CrossRef]
- Zhao, F.; Long, D.; Li, X.; Huang, Q.; Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, T.-b.; Li, M.-q.; Dong, J.; Qin, Y.; Liu, R. Variations in glacier coverage in the Himalayas based on optical satellite data over the past 25 years. Catena 2022, 214, 106240. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Shugar, D.H.; Burr, A.; Haritashya, U.K.; Kargel, J.S.; Watson, C.S.; Kennedy, M.C.; Bevington, A.R.; Betts, R.A.; Harrison, S.; Strattman, K. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 2020, 10, 939–945. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.; Su, P. The relationship between air temperature fluctuation and Glacial Lake Outburst Floods in Tibet, China. Quat. Int. 2014, 321, 78–87. [Google Scholar] [CrossRef]
- Legg, S. IPCC, 2021: Climate Change 2021—The Physical Science basis. Interaction 2021, 49, 44–45. Available online: https://search.informit.org/doi/10.3316/informit.315096509383738 (accessed on 10 December 2023).
- Wester, P.; Chaudhary, S.; Chettri, N.; Maharjan, A.; Nepal, S.; Steiner, J. Water, Ice, Society, and Ecosystems in the Hindu Kush Himalaya: An Outlook; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2023. [Google Scholar] [CrossRef]
- Bhasin, R.; Aslan, G.; Dehls, J. Ground Investigations and Detection and Monitoring of Landslides Using SAR Interferometry in Gangtok, Sikkim Himalaya. Geohazards 2023, 4, 25–39. [Google Scholar] [CrossRef]
- Sattar, A.; Goswami, A.; Kulkarni, A.V.; Emmer, A.; Haritashya, U.K.; Allen, S.; Frey, H.; Huggel, C. Future Glacial Lake Outburst Flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology 2021, 388, 107783. [Google Scholar] [CrossRef]
- Furian, W.; Loibl, D.; Schneider, C. Future glacial lakes in High Mountain Asia: An inventory and assessment of hazard potential from surrounding slopes. J. Glaciol. 2021, 67, 653–670. [Google Scholar] [CrossRef]
- Raj, K.B.G.; Remya, S.N.; Kumar, K.V. Remote sensing-based hazard assessment of glacial lakes in Sikkim Himalaya. Curr. Sci. 2013, 104, 359–364. Available online: https://www.jstor.org/stable/24089638 (accessed on 10 December 2023).
- Sharma, R.K.; Pradhan, P.; Sharma, N.P.; Shrestha, D.G. Remote sensing and in situ-based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India. Nat. Hazards 2018, 93, 393–409. [Google Scholar] [CrossRef]
- Worni, R.; Huggel, C.; Stoffel, M. Glacial lakes in the Indian Himalayas—From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci. Total Environ. 2013, 468–469, S71–S84. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Rai, S.C.; Thakur, P.K.; Emmer, A. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya. Geomorphology 2017, 295, 39–54. [Google Scholar] [CrossRef]
- Sattar, A.; Goswami, A.; Kulkarni, A.V. Hydrodynamic moraine-breach modeling and outburst flood routing—A hazard assessment of the South Lhonak lake, Sikkim. Sci. Total Environ. 2019, 668, 362–378. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Balz, T.; Luo, H.; Liao, M.; Zhang, L. GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data. Comput. Geosci. 2019, 129, 12–25. [Google Scholar] [CrossRef]
- Yague-Martinez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.; He, X.; Li, Z.; Shi, G. FaSHPS-InSAR technique for distributed scatterers: A case study over the lost hills oil field, California. Chin. J. Geophys. 2016, 59, 3592–3603. [Google Scholar] [CrossRef]
- Li, Y. Surface Deformation, Co-Seismic and Post-Seismic Activity Constrained by Advanced in SAR Time Series Analysis; Institute of Engineering Mechanics, China Earthquake Administration: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. JOSA A 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Z.; Deng, H.; Huang, R.Q.; Zhang, L.M.; Guo, X.G.; Zhou, Y. Evolution of lakes created by landslide dams and the role of dam erosion: A case study of the Jiajun landslide on the Dadu River, China. Quat. Int. 2019, 503, 41–50. [Google Scholar] [CrossRef]
- Tu, G.; Deng, H. Formation and evolution of a successive landslide dam by the erosion of river: A case study of the Gendakan landslide dam on the Lancang River, China. Bull. Eng. Geol. Environ. 2020, 79, 2747–2761. [Google Scholar] [CrossRef]
- Emmer, A.; Cochachin, A. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas. AUC Geogr. 2013, 48, 5–15. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Plafker, G.; Eyzaguirre, V.R. Chapter 7—Rock Avalanche and Wave at Chungar, Peru. In Developments in Geotechnical Engineering; Voight, B., Ed.; Elsevier: Amsterdam, The Netherlands, 1979; Volume 14, pp. 269–279. [Google Scholar] [CrossRef]
- Keefer, D.K. Investigating landslides caused by earthquakes—A historical review. Surv. Geophys. 2002, 23, 473–510. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, J.; Zhang, L.M.; Tang, W.H. Stability analysis of rainfall-induced slope failure: A review. Proc. Inst. Civ. Eng. -Geotech. Eng. 2011, 164, 299–316. [Google Scholar] [CrossRef]
- Rahardjo, H.; Li, X.W.; Toll, D.G.; Leong, E.C. The effect of antecedent rainfall on slope stability. In Unsaturated Soil Concepts and Their Application in Geotechnical Practice; Toll, D.G., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 371–399. [Google Scholar] [CrossRef]
- Kristo, C.; Rahardjo, H.; Satyanaga, A. Effect of variations in rainfall intensity on slope stability in Singapore. Int. Soil Water Conserv. Res. 2017, 5, 258–264. [Google Scholar] [CrossRef]
- Yin, Y.; Deng, Q.; Li, W.; He, K.; Wang, Z.; Li, H.; An, P.; Fang, K. Insight into the crack characteristics and mechanisms of retrogressive slope failures: A large-scale model test. Eng. Geol. 2023, 327, 107360. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Li, B.; Li, Y.; Jiang, W. Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim. Remote Sens. 2024, 16, 2307. https://doi.org/10.3390/rs16132307
Yu Y, Li B, Li Y, Jiang W. Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim. Remote Sensing. 2024; 16(13):2307. https://doi.org/10.3390/rs16132307
Chicago/Turabian StyleYu, Yang, Bingquan Li, Yongsheng Li, and Wenliang Jiang. 2024. "Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim" Remote Sensing 16, no. 13: 2307. https://doi.org/10.3390/rs16132307
APA StyleYu, Y., Li, B., Li, Y., & Jiang, W. (2024). Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim. Remote Sensing, 16(13), 2307. https://doi.org/10.3390/rs16132307