Spatiotemporal Variation in Water Deficit- and Heatwave-Driven Flash Droughts in Songnen Plain and Its Ecological Impact
<p>A map of the Songnen Plain.</p> "> Figure 2
<p>A schematic representation of the method used to identify a flash drought event. The subfigure shows the development period of flash drought revealed by changes in soil moisture.</p> "> Figure 3
<p>Spatial distribution of the (<b>a</b>) number and (<b>b</b>) average duration of flash drought events in the Songnen Plain during 2002–2022.</p> "> Figure 4
<p>Spatial distribution of the number (<b>a</b>,<b>c</b>) and average duration (<b>b</b>,<b>d</b>) of water scarcity- (the first line) and heatwave-driven (the second line) flash droughts in the Songnen Plain during 2002–2022.</p> "> Figure 5
<p>Bubble plots of the duration (days) and onset time of (<b>a</b>) water deficit- and (<b>b</b>) heatwave-driven flash drought events during 2002–2022.</p> "> Figure 6
<p>Annual variation (the left panel), data distribution, and probability density of areas’ proportion (the right panel) affected by water deficit (P-deficit)- and high-temperature (Heat-wave)-driven flash drought events during the spring, summer, and autumn in the Songnen Plain from 2002 to 2022. The red and purple color refer to P-deficit and Heat-wave driven flash drought events respectively.</p> "> Figure 7
<p>The spatial distribution of the GPP response rates to (<b>a</b>) water deficit- and (<b>b</b>) heatwave-driven flash drought events across the Songnen Plain from 2002 to 2022.</p> "> Figure 8
<p>Spatial distribution of water use efficiency (WUE) versus base water use efficiency (uWUE) during the development (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and recovery periods (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) of water deficit-type and heatwave-driven flash droughts events from 2002 to 2022.</p> "> Figure 8 Cont.
<p>Spatial distribution of water use efficiency (WUE) versus base water use efficiency (uWUE) during the development (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and recovery periods (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) of water deficit-type and heatwave-driven flash droughts events from 2002 to 2022.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.2.1. Ascertainment of Quintile Rankings for Pentad Soil Moisture Levels
2.2.2. Elucidation of Flash Drought Phenomena and Their Commencement Phases
2.2.3. Criteria for Differentiating Water Scarcity- and Heatwave-Induced Droughts
2.2.4. Ecological Impacts of Flash Drought Episodes
3. Results
3.1. Subsection
Spatiotemporal Distributions of Flash Drought Events
3.2. Spatial Distribution of Water Deficit- and Heatwave-Driven Flash Droughts
3.3. Temporal Changes in Water Deficit- and Heatwave-Driven Flash Droughts
3.4. Ecological Response to Flash Droughts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Ma, J.; Guan, X.; Li, Y.; He, Y. Progress in Semi-Arid Climate Change Studies in China. Adv. Atmos. Sci. 2019, 36, 922–937. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wu, P.; Ji, P.; Sheffield, J.; Zhang, M. Anthropogenic Shift towards Higher Risk of Flash Drought over China. Nat. Commun. 2019, 10, 4661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yuan, X.; Otkin, J.A.; Ji, P. Climate Warming Outweighs Vegetation Greening in Intensifying Flash Droughts over China. Environ. Res. Lett. 2022, 17, 054041. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the Complex Impacts of Drought: A Key to Enhancing Drought Mitigation and Preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef]
- Seneviratne, S.; Lüthi, D.; Litschi, M.; Schär, C. Land-Atmosphere Coupling and Climate Change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X. Two Types of Flash Drought and Their Connections with Seasonal Drought. Adv. Atmos. Sci. 2018, 35, 1478–1490. [Google Scholar] [CrossRef]
- Lisonbee, J.; Woloszyn, M.; Skumanich, M. Making Sense of Flash Drought: Definitions, Indicators, and Where We Go from Here. J. Appl. Serv. Climatol. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Dirmeyer, P.; Balsamo, G.; Blyth, E.; Morrison, R.; Cooper, H. Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018. AGU Adv. 2021, 2, e2020AV000283. [Google Scholar] [CrossRef]
- Lesinger, K.; Tian, D. Trends, Variability, and Drivers of Flash Droughts in the Contiguous United States. Water Resour. Res. 2022, 58, e2022WR032186. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, F.; Li, H.; Chen, S.S. A Review on Multi-Scale Drought Processes and Prediction under Global Change. Trans. Atmos. Sci. 2020, 43, 225–237. [Google Scholar]
- Yuan, X.; Wang, Y.; Ji, P.; Wu, P.; Sheffield, J.; Otkin, J. A Global Transition to Flash Droughts under Climate Change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Mishra, A.K. A Multivariate Flash Drought Indicator for Identifying Global Hotspots and Associated Climate Controls. Geophys. Res. Lett. 2022, 49, e2021GL096804. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Jiao, W.; Zhao, L.; Zeng, X.; Xing, X.; Zhang, L.; Hong, Y.; Lu, Q. A New Multi-Variable Integrated Framework for Identifying Flash Drought in the Loess Plateau and Qinling Mountains Regions of China. Agric. Water Manag. 2022, 265, 107544. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Otkin, J.A. Remote Sensing of the Impact of Flash Drought Events on Terrestrial Carbon Dynamics over China. Carbon Balance Manag. 2020, 15, 20. [Google Scholar]
- Mo, K.; Lettenmaier, D. Heat Wave Flash Droughts in Decline. Geophys. Res. Lett. 2015, 42, 2823–2829. [Google Scholar] [CrossRef]
- Mo, K.; Lettenmaier, D. Precipitation Deficit Flash Droughts over the United States. J. Hydrometeorol. 2016, 17, 1169–1184. [Google Scholar]
- Christian, J.I.; Basara, J.B.; Otkin, J.A.; Hunt, E.D.; Wakefield, R.A.; Flanagan, P.X.; Xiao, X. A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States. J. Hydrometeorol. 2019, 20, 833–846. [Google Scholar]
- Liang, M.; Yuan, X. Critical Role of Soil. Moisture Memory in Predicting the 2012 Central United States Flash Drought. Front. Earth Sci. 2021, 9, 615969. [Google Scholar]
- Mishra, V.; Aadhar, S.; Mahto, S.S. Anthropogenic Warming and Intraseasonal Summer Monsoon Variability Amplify the Risk of Future Flash Droughts in India. npj Clim. Atmos. Sci. 2021, 4, 1. [Google Scholar]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing Flash Droughts over China during the Recent Global Warming Hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Yu, G.; Chen, Z.; He, H.; Guo, W.; et al. Severe Summer Heatwave and Drought Strongly Reduced Carbon Uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-Temporal Variation of Drought in China during 1961–2012: A Climatic Perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Gao, J.B.; Liu, L.L.; Guo, L.H.; Sun, D.Q.; Liu, W.L.; Hou, W.J.; Wu, S. Synergic Effects of Climate Change and Phenological Variation on Agricultural Production and Its Risk Pattern in Black Soil Region of Northeast China. Acta Geogr. Sin. 2022, 77, 1681–1700. [Google Scholar]
- Zhang, Q.; Li, Q.; Singh, V.P.; Shi, P.; Huang, Q.; Sun, P. Nonparametric Integrated Agrometeorological Drought Monitoring: Model Development and Application. J. Geophys. Res. Atmos. 2018, 123, 73–88. [Google Scholar] [CrossRef]
- Sha, S.; Wang, Y.; Shen, X.; Li, X.; Feng, T. Analysis of Frequency Variation and Causes of Mutation Change about Spring Drought over Northeast Region of China. J. Nat. Disasters 2017, 26, 180–190. [Google Scholar]
- Yao, P.; Lu, H.; Shi, J.; Zhao, T.; Yang, K.; Cosh, M.; Gianotti, D.; Entekhabi, D. A Long Term Global Daily Soil Moisture Dataset Derived from AMSR-E and AMSR2 (2002–2019). Sci. Data 2021, 8, 143. [Google Scholar] [CrossRef]
- Guo, E.; Liu, X.; Zhang, J.; Wang, Y.; Wang, C.; Wang, R.; Li, D. Assessing Spatiotemporal Variation of Drought and Its Impact on Maize Yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Rigden, A.; Mueller, N.; Holbrook, N.; Pillai, N.; Huybers, P. Combined Influence of Soil Moisture and Atmospheric Evaporative Demand Is Important for Accurately Predicting US Maize Yields. Nat. Food 2020, 1, 127–133. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E. GLEAM v3: Satellite-Based Land Evaporation and Root-Zone SM. Geosci. Model. Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Parker, T.; Gallant, A.; Hobbins, M.; Hoffmann, D. Flash Drought in Australia and Its Relationship to Evaporative Demand. Environ. Res. Lett. 2021, 16, 064033. [Google Scholar] [CrossRef]
- Sridhar, V.; Ali, S.A. Climate Change Impacts on Conventional and Flash Droughts in the Mekong River Basin. Sci. Total Environ. 2022, 838, 155845. [Google Scholar]
- Osman, M.; Zaitchik, B.F.; Badr, H.S.; Christian, J.I.; Tadesse, T.; Otkin, J.A.; Anderson, M.C. Flash Drought Onset over the Contiguous United States: Sensitivity of Inventories and Trends to Quantitative Definitions. Hydrol. Earth Syst. Sci. 2021, 25, 565–581. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, L.; Lin, A.; Wang, L.; Li, Q.; She, D.; Qu, S. Impacts of Preseason Drought on Vegetation Spring Phenology across the Northeast China Transect. Sci. Total Environ. 2020, 738, 140297. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Apps, D.; Arcand, S.; Xu, H.; Pan, M.; Hoerling, M. Contribution of Temperature and Precipitation Anomalies to the California Drought during 2012–2015. Geophys. Res. Lett. 2017, 44, 3184–3192. [Google Scholar] [CrossRef]
- Poonia, V.; Kumar Goyal, M.; Jha, S.; Dubey, S. Terrestrial Ecosystem Response to Flash Droughts over India. J. Hydrol. 2022, 605, 127402. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C.; Zhang, X. Responses of Ecosystem Water Use Efficiency to Meteorological Drought under Different Biomes and Drought Magnitudes in Northern China. Agric. For. Meteorol. 2019, 278, 107660. [Google Scholar] [CrossRef]
- Flach, M.; Brenning, A.; Gans, F.; Reichstein, M.; Sippel, S.; Mahecha, M.D. Vegetation Modulates the Impact of Climate Extremes on Gross Primary Production. Biogeosci. Discuss. 2021, 18, 39–53. [Google Scholar] [CrossRef]
- O, S.; Park, S.K. Global Ecosystem Responses to Flash Droughts Are Modulated by Background Climate and Vegetation Conditions. Commun. Earth Environ. 2024, 5, 88. [Google Scholar] [CrossRef]
- Sungmin, O.; Park, S. Flash Drought Drives Rapid Vegetation Stress in Arid Regions in Europe. Environ. Res. Lett. 2023, 18, 014028. [Google Scholar]
- Jin, C.; Luo, X.; Xiao, X.; Dong, J.; Li, X.; Yang, J.; Zhao, D. The 2012 Flash Drought Threatened US Midwest Agroecosystems. Chin. Geogr. Sci. 2019, 29, 768–783. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J.; Sun, L.; Sivakumar, B. Time-Lag Effects of Vegetation Responses to Soil Moisture Evolution: A Case Study in the Xijiang Basin in South China. Stoch. Environ. Res. Risk Assess. 2018, 32, 2423–2432. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X. Rapid Reduction in Ecosystem Productivity Caused by Flash Droughts Based on Decade-Long FLUXNET Observations. Hydrol. Earth Syst. Sci. 2020, 24, 5579–5593. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C.; Yang, X. Diverse Responses of Vegetation Growth to Meteorological Drought across Climate Zones and Land. Biomes in Northern China from 1981 to 2014. Agric. For. Meteorol. 2018, 262, 1–13. [Google Scholar] [CrossRef]
- Sun, S.; Du, W.; Song, Z.; Zhang, D.; Wu, X.; Chen, B.; Wu, Y. Response of Gross Primary Productivity to Drought Time-Scales Across China. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005953. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Su, B.; Wang, A.; Tao, H.; Zhai, J.; Kundzewicz, Z.W.; Jiang, T. Choice of Potential Evapotranspiration Formulas Influences Drought Assessment: A Case Study in China. Atmos. Res. 2020, 242, 104979. [Google Scholar] [CrossRef]
- Xi, X.; Yuan, X. Significant Water Stress on Gross Primary Productivity during Flash Droughts with Hot Conditions. Agric. For. Meteorol. 2022, 324, 109100. [Google Scholar] [CrossRef]
- Dannenberg, M.P.; Yan, D.; Barnes, M.L.; Smith, W.K.; Johnston, M.R.; Scott, R.L.; Biederman, J.A.; Knowles, J.F.; Wang, X.; Duman, T.; et al. Exceptional Heat and Atmospheric Dryness Amplified Losses of Primary Production during the 2020 U.S. Southwest Hot Drought. Glob. Chang. Biol. 2022, 28, 4794–4806. [Google Scholar] [CrossRef] [PubMed]
- Rambal, S.; Lempereur, M.; Limousin, J.M.; Martin-StPaul, N.K.; Ourcival, J.M.; Rodríguez-Calcerrada, J. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice? Biogeosciences 2014, 11, 6855–6869. [Google Scholar] [CrossRef]
- Peters, W.; van der Velde, I.R.; van Schaik, E.; Miller, J.B.; Ciais, P.; Duarte, H.F.; van der Laan-Luijkx, I.T.; van der Molen, M.K.; Scholze, M.; Schaefer, K.; et al. Increased Water-Use Efficiency and Reduced CO2 Uptake by Plants during Droughts at a Continental Scale. Nat. Geosci. 2018, 11, 744–748. [Google Scholar] [CrossRef]
- Griffin-Nolan, R.J.; Blumenthal, D.M.; Collins, S.L.; Farkas, T.E.; Hoffman, A.M.; Mueller, K.E.; Ocheltree, T.W.; Smith, M.D.; Whitney, K.D.; Knapp, A.K. Shifts in Plant Functional Composition Following Long-term Drought in Grasslands. J. Ecol. 2019, 107, 2133–2148. [Google Scholar] [CrossRef]
- Knapp, A.K.; Condon, K.V.; Folks, C.C.; Sturchio, M.A.; Griffin-Nolan, R.J.; Kannenberg, S.A.; Gill, A.S.; Hajek, O.L.; Siggers, J.A.; Smith, M.D. Field experiments have enhanced our understanding of drought impacts on terrestrial ecosystems—But where do we go from here? Funct. Ecol. 2024, 38, 76–97. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Yu, M.; Zhao, H.; Zhu, Z. Productivity response characteristics of different grasslands to flash drought and their relationship with drought tolerance. Ecol. Indic. 2024, 159, 111761. [Google Scholar] [CrossRef]
- Xi, X.; Liang, M.; Yuan, X. Increased atmospheric water stress on gross primary productivity during flash droughts over China from 1961 to 2022. Weather. Clim. Extrem. 2024, 44, 100667. [Google Scholar] [CrossRef]
- Christian, J.I.; Hobbins, M.; Hoell, A.; Otkin, J.A.; Ford, T.W.; Cravens, A.E.; Mishra, V. Flash drought: A state of the science review. Wiley Interdiscip. Rev. Water 2024, 53, e1714. [Google Scholar] [CrossRef]
- Zou, K.; Cheng, L.; Wu, M.; Wang, S.; Qin, S.; Liu, P.; Zhang, L. Contrasting variations of ecosystem gross primary productivity during flash droughts caused by competing water demand and supply. Environ. Res. Lett. 2024, 19, 024031. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, R.; Zhang, M.; Wang, C.; Ma, Z.; Xiu, Y.; Wang, Q.; Guo, Y. Hydrological Connectivity Dynamics and Conservation Priorities for Surface-Water Patches in the Yellow River Delta National Nature Reserve, China. Ecohydrol. Hydrobiol. 2020, 20, 525–536. [Google Scholar] [CrossRef]
- Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Zhang, K.; Robertson, E.; Kautz, M.; Martens, B.; et al. Increased Control of Vegetation on Global Terrestrial Energy Fluxes. Nat. Clim. Chang. 2020, 10, 356–362. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate Change Will Affect Global Water Availability through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Black, E. Global change in agricultural flash drought over the 21st century. Adv. Atmos. Sci. 2024, 41, 209–220. [Google Scholar] [CrossRef]
- Lovino, M.A.; Pierrestegui, M.J.; Müller, O.V.; Müller, G.V.; Berbery, E.H. The prevalent life cycle of agricultural flash droughts. npj Clim. Atm. Sci. 2024, 7, 73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Wu, Y.; Zhang, Q.; Jiang, L.; Ma, Q.; Chen, M.; Dai, C.; Zhang, G. Spatiotemporal Variation in Water Deficit- and Heatwave-Driven Flash Droughts in Songnen Plain and Its Ecological Impact. Remote Sens. 2024, 16, 1408. https://doi.org/10.3390/rs16081408
Sun J, Wu Y, Zhang Q, Jiang L, Ma Q, Chen M, Dai C, Zhang G. Spatiotemporal Variation in Water Deficit- and Heatwave-Driven Flash Droughts in Songnen Plain and Its Ecological Impact. Remote Sensing. 2024; 16(8):1408. https://doi.org/10.3390/rs16081408
Chicago/Turabian StyleSun, Jiahao, Yanfeng Wu, Qingsong Zhang, Lili Jiang, Qiusheng Ma, Mo Chen, Changlei Dai, and Guangxin Zhang. 2024. "Spatiotemporal Variation in Water Deficit- and Heatwave-Driven Flash Droughts in Songnen Plain and Its Ecological Impact" Remote Sensing 16, no. 8: 1408. https://doi.org/10.3390/rs16081408
APA StyleSun, J., Wu, Y., Zhang, Q., Jiang, L., Ma, Q., Chen, M., Dai, C., & Zhang, G. (2024). Spatiotemporal Variation in Water Deficit- and Heatwave-Driven Flash Droughts in Songnen Plain and Its Ecological Impact. Remote Sensing, 16(8), 1408. https://doi.org/10.3390/rs16081408