Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests
<p>Study areas. (<b>a</b>) location of the Thuringia state in Germany (the state with red border), (<b>b</b>) location of the Kyffhäuser forest (pink) and Thuringian forest (blue) in Thuringia; (<b>c</b>) Forest type map (WGS84/UTM zone 32N) over study sites available at geoportal-th.de (accessed on 2 September 2022) [<a href="#B36-remotesensing-15-01522" class="html-bibr">36</a>]. Since only forest type map has been downloaded and used, the white spaces show other land covers.</p> "> Figure 2
<p>Examples of acquired GEDI waveform over broadleaf: (<b>a</b>) leaf-off, (<b>b</b>) leaf-on; and needleleaf: (<b>c</b>) winter, (<b>d</b>) summer. Location and acquisition date (year/month) of used GEDI waveforms and the distance between two dates in each forest type is noted.</p> "> Figure 3
<p>GEDI-H100 versus ALS-Hmax for each algorithm setting group ((<b>a</b>–<b>f</b>) for algorithms <b>a1</b> to <b>a6</b>).</p> "> Figure 4
<p>GEDI-H100 versus ALS-Hmax for algorithm group 2 in three forest types, including (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) mixed.</p> "> Figure 5
<p>H100_difference (GEDI H100−ALS Hmax) versus sensitivity for (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) mixed forests. In addition, the number of GEDI shots (<span class="html-italic">n</span>) is displayed for each sensitivity range.</p> "> Figure 6
<p>Distribution of canopy cover over (<b>a</b>) broadleaf (<b>b</b>) needleleaf, and (<b>c</b>) mixed forest.</p> "> Figure 7
<p>GEDI-H100 versus ALS-Hmax in the three forest types with sensitivity < 0.96 (<b>a</b>–<b>c</b>) and sensitivity > 0.96 (<b>d</b>–<b>f</b>).</p> "> Figure 8
<p>GEDI-H100 versus ALS-Hmax in the three forest types with sensitivity < 0.90 (<b>a</b>–<b>c</b>) and sensitivity > 0.90 (<b>d</b>–<b>f</b>).</p> "> Figure 9
<p>Relationship between accuracy criteria (RMSE and Bias) and sensitivity: (<b>a</b>) RMSE, broadleaf, (<b>b</b>) RMSE, needleleaf, and (<b>c</b>) RMSE, mixed forest, (<b>d</b>) Bias, broadleaf, (<b>e</b>) Bias, needleleaf, and (<b>f</b>) Bias, mixed forest in leaf-off and leaf-on seasons.</p> "> Figure 10
<p>Boxplot of H_difference (GEDI H100-ALS Hmax) on canopy cover for (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) Mixed forest.</p> "> Figure 11
<p>Boxplot of H_difference on acquisition time for (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) mixed forest.</p> "> Figure 12
<p>Boxplot of H_difference on beam type for (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) mixed forest.</p> "> Figure 13
<p>Boxplot of H_difference on plant area index (PAI) for (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) mixed forest.</p> "> Figure 14
<p>Boxplot of PAI on monthly acquisition time for (<b>a</b>) broadleaf, (<b>b</b>) needleleaf, and (<b>c</b>) mixed forest. The lower and upper hinge of the boxes indicates the 25th and 75th percentile of the data, respectively.</p> "> Figure 15
<p>GEDI-H100 versus ALS-Hmax in the three forest types with median_pai < 2 (<b>a</b>–<b>c</b>) and median_pai > 2 (<b>d</b>–<b>f</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. GEDI Data
2.2.2. ALS Data
2.2.3. Ancillary Data
2.3. Preprocessing of GEDI Data
- waveforms with zero detected modes (num_detectedmodes = 0), which mostly correspond to noisy acquisitions [8].
- Incomplete waveforms, i.e., waveforms with insufficient bins: waveforms where the end location of their useful part (search_end) equals the total number of bins in the waveforms (rx_sample_count) [8].
- waveforms in which either the difference between the center of lowest (zcross) and highest (zcross0) modes above noise level equals zero (zcross−zcross0 = 0) and the width of that mode (rx_gwidth) is lower than 20 m. These are likely to represent non-forest area (i.e., Zcross−zcross0 = 0 if rx_gwidth < 20).
- waveforms with a relative height of 100 (RH100) (defined as the distance between the elevations of detected ground return and the 100% accumulated waveform energy), lower than 3 m or greater than 70 m. RH100 < 3 m, apparently corresponds to bare soil or low vegetation and RH100 > 70 does not represent realistic vegetation heights [8,13,43].
2.4. Analysis of GEDI Canopy Height
2.4.1. Comparing GEDI Processing Algorithms
2.4.2. GEDI Heights over Different Forest Types, and Leaf-On and Leaf-Off Condition
Effects of GEDI Acquisition Parameters
Effects of Plant Area Index (PAI)
2.5. Accuracy Assessment
3. Results
3.1. GEDI Processing Algorithm
3.2. GEDI Heights over Different Forest Types
3.2.1. Effects of GEDI Beam Sensitivity
3.2.2. Effects of Forest Leaf-On and Leaf-OFF Condition
3.2.3. Effects of GEDI Acquisition Time and Beam Type
3.2.4. Effects of Plant Area Index (PAI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Gao, T.; Zhu, J.; Wu, F.; Li, X.; Lu, D.; Yu, F. Individual tree segmentation and tree height estimation using leaf-off and leaf-on UAV-LiDAR data in dense deciduous forests. Remote Sens. 2022, 14, 2787. [Google Scholar] [CrossRef]
- Kwak, D.-A.; Lee, W.-K.; Lee, J.-H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using lidar data. J. For. Res. 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Douss, R.; Farah, I.R. Extraction of individual trees based on Canopy Height Model to monitor the state of the forest. Trees For. People 2022, 8, 100257. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Lahssini, K. An Assessment of the GEDI Lasers’ Capabilities in Detecting Canopy Tops and Their Penetration in a Densely Vegetated, Tropical Area. Remote Sens. 2022, 14, 2969. [Google Scholar] [CrossRef]
- Dhargay, S.; Lyell, C.S.; Brown, T.P.; Inbar, A.; Sheridan, G.J.; Lane, P.N.J. Performance of GEDI space-borne lidar for quantifying structural variation in the temperate forests of south-eastern Australia. Remote Sens. 2022, 14, 3615. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2020, 253, 112165. [Google Scholar] [CrossRef]
- Lahssini, K.; Baghdadi, N.; le Maire, G.; Fayad, I. Influence of GEDI Acquisition and Processing Parameters on Canopy Height Estimates over Tropical Forests. Remote Sens. 2022, 14, 6264. [Google Scholar] [CrossRef]
- Pourrahmati, M.R.; Baghdadi, N.N.; Darvishsefat, A.A.; Namiranian, M.; Fayad, I.; Bailly, J.-S.; Gond, V. Capability of GLAS/ICESat Data to Estimate Forest Canopy Height and Volume in Mountainous Forests of Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5246–5261. [Google Scholar] [CrossRef] [Green Version]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring key forest structure attributes across the conterminous united states by integrating GEDI LiDAR measurements and VIIRS data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Duncanson, L.; Neuenschwander, A.; Hancock, S.; Thomas, N.; Fatoyinbo, T.; Simard, M.; Silva, C.A.; Armston, J.; Luthcke, S.B.; Hofton, M.; et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 2020, 242, 111779. [Google Scholar] [CrossRef]
- Urbazaev, M.; Hess, L.L.; Hancock, S.; Sato, L.Y.; Ometto, J.P.; Thiel, C.; Dubois, C.; Heckel, K.; Urban, M.; Adam, M.; et al. Assessment of terrain elevation estimates from ICESat-2 and GEDI spaceborne LiDAR missions across different land cover and forest types. Sci. Remote Sens. 2022, 6, 100067. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Frappart, F. Comparative Analysis of GEDI’s Elevation Accuracy from the First and Second Data Product Releases over Inland Waterbodies. Remote Sens. 2022, 14, 340. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.S.; Frappart, F.; Zribi, M. Analysis of GEDI Elevation Data Accuracy for Inland Waterbodies Altimetry. Remote Sens. 2020, 12, 2714. [Google Scholar] [CrossRef]
- Sun, M.; Cui, L.; Park, J.; García, M.; Zhou, Y.; Silva, C.A.; He, L.; Zhang, H.; Zhao, K. Evaluation of NASA’s GEDI Lidar Observations for Estimating Biomass in Temperate and Tropical Forests. Forests 2022, 13, 1686. [Google Scholar] [CrossRef]
- Qi, W.; Lee, S.K.; Hancock, S.; Luthcke, S.; Tang, H.; Armston, J.; Dubayah, R. Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sens. Environ. 2019, 221, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Duncanson, L.; Kellner, J.R.; Armston, J.; Dubayah, R.; Minor, D.M.; Hancock, S.; Healey, S.P.; Patterson, P.L.; Saarela, S.; Marselis, S.; et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sens. Environ. 2022, 270, 112845. [Google Scholar] [CrossRef]
- Qi, W.; Saarela, S.; Armston, J.; Stahl, G.; Dubayah, R. Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Healey, S.P.; Yang, Z.; Gorelick, N.; Ilyushchenko, S. Highly Local Model Calibration with a New GEDI LiDAR Asset on Google Earth Engine Reduces Landsat Forest Height Signal Saturation. Remote Sens. 2020, 12, 2840. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved estimation of forest stand volume by the integration of GEDI LiDAR data and multi-sensor imagery in the Changbai Mountains Mixed forests Ecoregion (CMMFE), northeast China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102326. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, T.; Yi, C.; Fang, W.; Hendrey, G.; Zhao, X. Forest drought resistance distinguished by canopy height. Environ. Res. Lett. 2018, 13, 075003. [Google Scholar] [CrossRef] [Green Version]
- Moradi, F.; Darvishsefat, A.A.; Pourrahmati, M.R.; Deljouei, A.; Borz, S.A. Estimating aboveground biomass in dense Hirnantian forests by the use of Sentinel-2 data. Forests 2022, 13, 104. [Google Scholar] [CrossRef]
- Marselis, S.M.; Tang, H.; Armston, J.; Abernethy, K.; Alonso, A.; Barbier, N.; Bissiengou, P.; Jeffery, K.; Kenfack, D.; Labrière, N.; et al. Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environ. Res. Lett. 2019, 14, 094013. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of Tropical Forest Height and Biomass Dynamics Using LiDAR Remote Sensing at La Selva, Costa Rica. J. Geophys. Res. 2010, 115, G00E09. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sens. Environ. 2021, 264, 112571. [Google Scholar] [CrossRef]
- Li, B.; Zhao, T.; Su, X.; Fan, G.; Zhang, W.; Deng, Z.; Yu, Y. Correction of Terrain Effects on Forest Canopy Height Estimation Using ICESat-2 and High Spatial Resolution Images. Remote Sens. 2022, 14, 4453. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Alcarde Alvares, C.; Stape, J.L.; Bailly, J.S.; Scolforo, H.F.; Cegatta, I.R.; Zribi, M.; Le Maire, G. Terrain slope effect on forest height and wood volume estimation from GEDI data. Remote Sens. 2021, 13, 2136. [Google Scholar] [CrossRef]
- Heurich, M.; Thoma, F. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. For. Int. J. For. Res. 2008, 81, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.A.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; GuerraHernández, J. Assessing the accuracy of GEDI Data for canopy height and aboveground biomass estimates in mediterranean forests. Remote Sens. 2021, 13, 2279. [Google Scholar] [CrossRef]
- Wang, C.; Elmore, A.J.; Numata, I.; Cochrane, M.A.; Shaogang, L.; Huang, J.; Zhao, Y.; Li, Y. Factors affecting relative height and ground elevation estimations of GEDI among forest types across the conterminous USA. GISci. Remote Sens. 2022, 59, 975–999. [Google Scholar] [CrossRef]
- Li, X.; Wessels, K.; Armston, J.; Hancock, S.; Mathieu, R.; Main, R.; Naidoo, L.; Erasmus, B.; Scholes, R. First validation of GEDI canopy heights in African savannas. Remote Sens. Environ. 2023, 285, 113402. [Google Scholar] [CrossRef]
- Eglitis, L. WorldData.info. Available online: https://www.worlddata.info/europe/germany/climate-thuringia.php#:~:text=Thuringia%20is%20the%20coldest%20region,rarely%20gets%20really%20warm%20here (accessed on 15 December 2022).
- Welle, T.; Aschenbrenner, L.; Kuonath, K.; Kirmaier, S.; Franke, J. Mapping dominant tree species of German forests. Remote Sens. 2022, 14, 3330. [Google Scholar] [CrossRef]
- Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth observation based monitoring of forests in Germany: A review Stefanie Holzwarth. Remote Sens. 2020, 12, 3570. [Google Scholar]
- The European State Forest Association, THÜRINGENFORST AÖR. Available online: https://eustafor.eu/members/thuringia (accessed on 25 November 2022).
- Thüringer Landesamt für Bodenmanagement und Geoinformation (TLBG). ATKIS Basis-DLM, Thüringen Komplett. Available online: https://www.geoportal-th.de/de-de/Downloadbereiche/Download-O_ene-Geodaten-Th%C3%BCringen/Download-ATKIS-Basis-DLM (accessed on 2 September 2022).
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The global ecosystem dynamics investigation: High-resolution laser ranging of the earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Hofton, M.; Blair, J.B. Algorithm Theoretical Basis Document (ATBD) For GEDI Transmit and Receive Waveform Processing for L1 and L2 Products; Goddard Space Flight Center: Greenbelt, MD, USA, 2019. Available online: https://lpdaac.usgs.gov/documents/581/GEDI_WF_ATBD_v1.0.pdf (accessed on 10 September 2022).
- Tang, H.; Armston, J. Algorithm Theoretical Basis Document (ATBD) for GEDI L2B Footprint Canopy Cover and Vertical Profile Metrics; Goddard Space Flight Center: Greenbelt, MD, USA, 2019. Available online: https://lpdaac.usgs.gov/documents/588/GEDI_FCCVPM_ATBD_v1.0.pdf (accessed on 10 September 2022).
- Thüringer Landesamt für Bodenmanagement und Geoinformation (TLBG). Available online: https://www.geoportal-th.de/de-de/Downloadbereiche/Download-O_ene-Geodaten-Th%C3%BCringen/Download-H%C3%B6hendaten (accessed on 2 September 2022).
- Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV). Dokumentation zur Modellierung der Geoinformationen des Amtlichen Vermessungswesens (GeoInfoDok), 6.0.1 ed.; AdV: München, Germany, 2020; Available online: https://www.adv-online.de/GeoInfoDok/GeoInfoDok-6.0/ (accessed on 29 September 2022).
- Roy, D.P.; Kashongwe, H.B.; Armston, J. The impact of geolocation uncertainty on GEDI tropical forest canopy height estimation and change monitoring. Sci. Remote Sens. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Adrah, E.; Wan Mohd Jaafar, W.S.; Omar, H.; Bajaj, S.; Leite, R.V.; Mazlan, S.M.; Silva, C.A.; Chel Gee Ooi, M.; Mohd Said, M.N.; Abdul Maulud, K.N.; et al. Analyzing Canopy Height Patterns and Environmental Landscape Drivers in Tropical Forests Using NASA’s GEDI Spaceborne LiDAR. Remote Sens. 2022, 14, 3172. [Google Scholar] [CrossRef]
- Hancock, S.; McGrath, C.; Lowe, C.; Davenport, I.; Woodhouse, I. Requirements for a global lidar system: Spaceborne lidar with wall-to-wall coverage. R. Soc. Open Sci. 2021, 8, 211166. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, G.; Qi, Y. Estimate of leaf area index in an old-growth mixed broadleaved-korean pine forest in northeastern China. PLoS ONE 2012, 7, e32155. [Google Scholar]
- The National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory. NOAA Solar Calculator. Available online: https://gml.noaa.gov/grad/solcalc/ (accessed on 15 December 2022).
- Gower, S.T.; Norman, J.M. Rapid Estimation of Leaf Area Index in Conifer and Broad-Leaf Plantations. Ecology 1991, 72, 1896–1900. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, C.; Schmullius, C. Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape. Remote Sens. 2012, 4, 2210–2235. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, R.; Pisek, J.; Chen, J.M. Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data. Biogeosciences 2017, 14, 1093–1110. [Google Scholar] [CrossRef] [Green Version]
- Pisek, J.; Chen, J.M.; Alikas, K.; Deng, F. Impacts of including forest understory brightness and foliage clumping information from multi-angular measurements on leaf area index mapping over North America. J. Geophys. Res. 2010, 115, G03023. [Google Scholar] [CrossRef] [Green Version]
- Wasser, L.; Day, R.; Chasmer, L.; Taylor, A. Influence of vegetation structure on LiDAR-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions. PLoS ONE 2013, 8, e54776. [Google Scholar] [CrossRef] [Green Version]
- Olesk, A.; Praks, J.; Antropov, O.; Zalite, K.; Arume, T.; Voormansik, K. Interferometric SAR coherence models for characterization of hemiboreal forests using tandem-x data. Remote Sens. 2016, 8, 700. [Google Scholar] [CrossRef] [Green Version]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Dickerson-Lange, S.E.; Gersonde, R.F.; Hubbart, J.A.; Link, T.E.; Nolin, A.W.; Perry, G.H.; Roth, T.R.; Wayand, N.E.; Lundquist, J.D. Snow disappearance timing is dominated by forest effects on snow accumulation in warm winter climates of the Pacific Northwest, United States. Hydrol. Process. 2017, 31, 1846–1862. [Google Scholar] [CrossRef]
- Kempes, C.P.; West, G.B.; Crowell, K.; Girvan, M. Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations. PLoS ONE 2011, 6, e20551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ganguly, S.; Nemani, R.R.; White, M.A.; Milesi, C.; Hashimoto, H.; Wang, W.; Saatchi, S.; Yu, Y.; Myneni, R.B. Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens. Environ. 2014, 151, 44–56. [Google Scholar] [CrossRef]
Criteria | Description | Equation |
---|---|---|
RMSE | Root mean square error | |
R2 | Square of the correlation coefficient | |
Bias | Mean difference between estimated and observed value | |
Median | The middle of a dataset when it is ordered | - |
MAD | Median absolute deviation | 1.4826 × median (|Δhi-mΔh|) |
xi: GEDI height; yi: ALS height; : mean GEDI height; : mean ALS height n: number of GEDI footprints; Δhi: (xi − yi); mΔh: median of Δh |
Algorithm Group | RMSE (m) | R2 | Bias (m) | Median (m) | MAD (m) | Footprints |
---|---|---|---|---|---|---|
a1 | 8.952 | 0.68 | −3.31 | −0.94 | 3.85 | 461802 |
a2 | 7.458 | 0.74 | −1.63 | −0.44 | 3.9 | 507892 |
a3 | 8.539 | 0.69 | −2.69 | −0.7 | 4.03 | 480710 |
a4 | 10.333 | 0.65 | −5.53 | −2.71 | 4.63 | 444350 |
a5 | 9.625 | 0.7 | 2.92 | 2.44 | 7.07 | 515869 |
a6 | 7.805 | 0.73 | −1.2 | −0.19 | 4.24 | 504041 |
Forest Type | Beam Type | Median H100_difference (m) | MAD H100_difference (m) | Number of Footprints |
---|---|---|---|---|
Broadleaf | Coverage | −1.85 | 4.82 | 63,524 |
Power | 0.27 | 3.87 | 71,823 | |
Needleleaf | Coverage | −1.2 | 3.53 | 113,956 |
Power | 0.38 | 3.11 | 121,365 | |
Mixed | Coverage | −1.59 | 4.85 | 63,467 |
Power | 0.35 | 4.12 | 73,757 |
Forest Type | Acquisition Time | Median H100_difference (m) | MAD H100_difference (m) | Number of Footprints (n) |
---|---|---|---|---|
Broadleaf | Day | −0.88 | 4.54 | 70,707 |
Night | −0.35 | 4.08 | 64,640 | |
Needleleaf | Day | −0.43 | 3.59 | 123,031 |
Night | −0.25 | 3.25 | 112,290 | |
Mixed | Day | −0.77 | 4.73 | 69,764 |
Night | −0.2 | 4.26 | 67,460 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajab Pourrahmati, M.; Baghdadi, N.; Fayad, I. Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. Remote Sens. 2023, 15, 1522. https://doi.org/10.3390/rs15061522
Rajab Pourrahmati M, Baghdadi N, Fayad I. Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. Remote Sensing. 2023; 15(6):1522. https://doi.org/10.3390/rs15061522
Chicago/Turabian StyleRajab Pourrahmati, Manizheh, Nicolas Baghdadi, and Ibrahim Fayad. 2023. "Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests" Remote Sensing 15, no. 6: 1522. https://doi.org/10.3390/rs15061522
APA StyleRajab Pourrahmati, M., Baghdadi, N., & Fayad, I. (2023). Comparison of GEDI LiDAR Data Capability for Forest Canopy Height Estimation over Broadleaf and Needleleaf Forests. Remote Sensing, 15(6), 1522. https://doi.org/10.3390/rs15061522