Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier
<p>Location map of the study areas. True color composite images from Sentinel 2. (Left to right in upper row: Rawalpindi–Islamabad, Multan, Faisalabad, and Gujranwala, left to right in lower row: Bahawalpur, Sahiwal, Sheikhupura, and Khanewal).</p> "> Figure 2
<p>Detailed methodology flowchart for fusion of S-1 and S-2 data and land cover classification utilizing random forest.</p> "> Figure 3
<p>Flowchart for quantification of expansion of the cities from classified maps obtained from fused dataset.</p> "> Figure 4
<p>Correlation plot of impervious surface area from Copernicus Global Land Service (<span class="html-italic">y</span>-axis) and this study (<span class="html-italic">x</span>-axis).</p> "> Figure 5
<p>Impervious surface expansion (2016–2020) in (<b>a</b>). Rawalpindi–Islamabad, (<b>b</b>). Multan, (<b>c</b>). Faisalabad, (<b>d</b>). Gujranwala, (<b>e</b>). Bahawalpur, (<b>f</b>). Sahiwal, (<b>g</b>). Sheikhupura, and (<b>h</b>). Khanewal.</p> "> Figure 6
<p>Land cover maps of Rawalpindi from (<b>a</b>) optical data and (<b>b</b>) fusion data demonstrating misclassified hill topography into water. Misclassifications are in figure (<b>a</b>).</p> "> Figure 7
<p>(<b>a</b>) The above figure is a true-color composite image from Google Earth Pro, for reference. (<b>b</b>) The lower figure is a barren surface around Bahawalpur that is misclassified as built-up by optical data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. SAR Data
2.2.2. MSI Data
2.2.3. DEM Data
2.2.4. Google Earth’s High-Resolution Images
2.2.5. Global Land Cover Maps
2.3. Methodology
2.3.1. Image Preprocessing
2.3.2. Land Cover Classification
2.3.3. Correlation Analysis
2.3.4. Test of Statistical Significance of Two Models
2.3.5. Impervious Surface Area and Expansion Rate Computation
3. Results
3.1. RF Model Statistics and Land Cover Map Validation
3.2. Correlation Analysis
3.3. Test of Statistical Significance
3.4. Impervious Surface Area and Cities’ Expansion Rates
4. Discussion
5. Methodology Transfer and Limitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. United Nations Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development. United Nations Population Division. 2008. Available online: https://sustainabledevelopment.un.org/content/documents/2529P01_UNPopDiv.pdf (accessed on 1 February 2021).
- Angel, S.; Blei, A.M.; Civco, D.L.; Parent, J. Atlas of Urban Expansion; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2012; p. 397. [Google Scholar]
- Berry, B.J. Urbanization. In Urban Ecology; Springer: Boston, MA, USA, 2008; pp. 25–48. [Google Scholar]
- Imbe, M.; Ohta, T.; Takano, N. Quantitative assessment of improvements in hydrological water cycle in urbanized river basins. Water Sci. Technol. 1997, 36, 219–222. [Google Scholar] [CrossRef]
- Nascimento, N.O.; Ellis, J.B.; Baptista, M.B.; Deutsch, J.C. Using detention basins: Operational experience and lessons. Urban Water 1999, 1, 113–124. [Google Scholar] [CrossRef]
- Wickham, J.D.; O’Neill, R.V.; Riitters, K.H.; Smith, E.R.; Wade, T.G.; Jones, K.B. Geographic targeting of increases in nutrient export due to future urbanization. Ecol. Appl. 2002, 12, 93–106. [Google Scholar] [CrossRef]
- Jones, J.A.; Swanson, F.J.; Wemple, B.C.; Snyder, K.U. Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conserv. Biol. 2000, 14, 76–85. [Google Scholar] [CrossRef]
- Gao, F.; De Colstoun, E.B.; Ma, R.; Weng, Q.; Masek, J.G.; Chen, J.; Pan, Y.; Song, C. Mapping impervious surface expansion using medium-resolution satellite image time series: A case study in the Yangtze River Delta, China. Int. J. Remote Sens. 2012, 33, 7609–7628. [Google Scholar] [CrossRef]
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Thakali, R.; Kalra, A.; Ahmad, S. Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley. Hydrology 2016, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Thakali, R.; Kalra, A.; Ahmad, S.; Qaiser, K. Management of an Urban Stormwater System Using Projected Future Scenarios of Climate Models: A Watershed-Based Modeling Approach. Open Water J. 2018, 5, 1–17. [Google Scholar]
- Forsee, W.; Ahmad, S. Evaluating Urban Stormwater Infrastructure Design in Response to Projected Climate Change. ASCE J. Hydrol. Eng. 2011, 16, 865–873. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Thakur, B.; Kalra, A.; Ahmad, S. Modeling of GRACE-Derived Groundwater Information in the Colorado River Basin. Hydrology 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Mistry, G.; Stephen, H.; Ahmad, S. Impact of Precipitation and Agricultural Productivity on Groundwater Storage in Rahim Yar Khan District, Pakistan. In Proceedings of the World Environmental and Water Resources Congress, Pittsburg, PA, USA, 19–23 May 2019; pp. 104–117. [Google Scholar]
- Bukhary, S.; Batista, J.; Ahmad, S. Analyzing Land and Water Requirements for Solar Deployment in the Southwestern United States. Renew. Sustain. Energy Rev. 2018, 82, 3288–3305. [Google Scholar] [CrossRef]
- Chen, C.; Kalra, A.; Ahmad, S. A Conceptualized Groundwater Flow Model Development for Integration with Surface Hydrology Model. In Proceedings of the World Environmental and Water Resources Congress, Sacramento, CA, USA, 21–25 May 2017; pp. 175–187. [Google Scholar] [CrossRef] [Green Version]
- Klein, R. Urbanization and stream quality impairment. Am. Water Resour. Assoc. Water Resour. Bull. 1979, 15, 948–963. [Google Scholar] [CrossRef]
- Harbor, J.M. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. J. Am. Plan. Assoc. 1994, 60, 95–108. [Google Scholar] [CrossRef]
- Pappas, E.A.; Smith, D.R.; Huang, C.; Shuster, W.D.; Bonta, J.V. Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena 2008, 72, 146–152. [Google Scholar] [CrossRef]
- Schueler, T.R.; Fraley-McNeal, L.; Cappiella, K. Is impervious cover still important? Review of recent research. J. Hydrol. Eng. 2009, 14, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Hurd, J.D.; Civco, D.L. Temporal characterization of impervious surfaces for the State of Connecticut. In Proceedings of the ASPRS Annual Conference, Denver, CO, USA, 23–28 May 2004. [Google Scholar]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414, 539–549. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review. Remote Sens. Rev. 2001, 20, 227–255. [Google Scholar] [CrossRef]
- Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.W.M.J.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Mayaux, P.; Bartholomé, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 2004, 31, 861–877. [Google Scholar] [CrossRef]
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. Globcover: Products Description and Validation Report. 2008. Available online: https://www.researchgate.net/publication/260137807_GLOBCOVER_products_description_and_validation_report (accessed on 20 February 2021).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poudel, U.; Stephen, H.; Ahmad, S. Evaluating Irrigation Performance and Water Productivity Using EEFlux ET and NDVI. Sustainability 2021, 13, 7967. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerie, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef] [Green Version]
- Stefanski, J.; Kuemmerle, T.; Chaskovskyy, O.; Griffiths, P.; Havryluk, V.; Knorn, J.; Korol, N.; Sieber, A.; Waske, B. Mapping land management regimes in western Ukraine using optical and SAR data. Remote Sens. 2014, 6, 5279–5305. [Google Scholar] [CrossRef] [Green Version]
- Brisco, B.; Brown, R.J. Multidate SAR/TM synergism for crop classification in western Canada. Photogramm. Eng. Remote Sens. 1995, 61, 1009–1014. [Google Scholar]
- Chust, G.; Ducrot, D.; Pretus, J.L. Land cover discrimination potential of radar multitemporal series and optical multispectral images in a Mediterranean cultural landscape. Int. J. Remote Sens. 2004, 25, 3513–3528. [Google Scholar] [CrossRef]
- Huang, H.; Legarsky, J.; Othman, M. Land-cover classification using Radarsat and Landsat imagery for St. Louis 2007, Missouri. Photogramm. Eng. Remote Sens. 2007, 73, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Attema, E.; Davidson, M.; Floury, N.; Levrini, G.; Rosich, B.; Rommen, B.; Snoeij, P. Sentinel-1 ESA’s new European radar observatory. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Richards, J.A.; Jia, X. The interpretation of digital image data. In Remote Sensing Digital Image Analysis; Springer: Heidelberg/Berlin, Germany, 1999; pp. 75–88. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of using sentinel-1 and-2 time-series to identify winter land use in agricultural landscapes. Remote Sens. 2019, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, P.; Bargiel, D. Fusion of Sentinel-1 and Sentinel-2 images for classification of agricultural areas using a novel classification approach. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6643–6646. [Google Scholar]
- Lu, L.; Tao, Y.; Di, L. Object-based plastic-mulched landcover extraction using integrated Sentinel-1 and Sentinel-2 data. Remote Sens. 2018, 10, 1820. [Google Scholar] [CrossRef] [Green Version]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Whyte, A.; Ferentinos, K.P.; Petropoulos, G.P. A new synergistic approach for monitoring wetlands using Sentinels-1 and 2 data with object-based machine learning algorithms. Environ. Model. Softw. 2018, 104, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Iannelli, G.C.; Gamba, P. Jointly exploiting Sentinel-1 and Sentinel-2 for urban mapping. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8209–8212. [Google Scholar]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 2017, 17, 1966. [Google Scholar]
- Tavus, B.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A fusion approach for flood mapping using Sentinel-1 and Sentinel-2 datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 641–648. [Google Scholar] [CrossRef]
- Manakos, I.; Kordelas, G.A.; Marini, K. Fusion of Sentinel-1 data with Sentinel-2 products to overcome non-favourable atmospheric conditions for the delineation of inundation maps. Eur. J. Remote Sens. 2020, 53 (Suppl. S2), 53–66. [Google Scholar]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop type and land cover mapping in northern Malawi using the integration of sentinel-1, sentinel-2, and planetscope satellite data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Heckel, K.; Urban, M.; Schratz, P.; Mahecha, M.D.; Schmullius, C. Predicting forest cover in distinct ecosystems: The potential of multi-source Sentinel-1 and-2 data fusion. Remote Sens. 2020, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4340–4354. [Google Scholar]
- Tavares, P.A.; Beltrão, N.E.S.; Guimarães, U.S.; Teodoro, A.C. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors 2019, 19, 1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbane, C.; Faure, J.F.; Baghdadi, N.; Villeneuve, N.; Petit, M. Rapid urban mapping using SAR/optical imagery synergy. Sensors 2008, 8, 7125–7143. [Google Scholar] [CrossRef] [PubMed]
- Gamba, P.; Dell’Acqua, F.; Dasarathy, B.V. Urban remote sensing using multiple data sets: Past, present, and future. Inf. Fusion 2005, 6, 319–326. [Google Scholar] [CrossRef]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- Mukhtar, U.; Zhangbao, Z.; Beihai, T.; Naseer, M.A.U.R.; Razzaq, A.; Hina, T. Implications of decreasing farm size on urbanization: A case study of Punjab Pakistan. J. Soc. Sci. Stud. 2018, 5, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. In Proceedings of the 3rd International Electronic Conference on Remote Sensing, In the Internet Environment, 22 May–5 June 2019; Volume 18, p. 11. Available online: https://sciforum.net/conference/ecrs-3 (accessed on 1 June 2021).
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Jenicka, S.; Suruliandi, A. A textural approach for land cover classification of remotely sensed images. CSI Trans. ICT 2014, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hamid, A.; Dubovyk, O.; El-Magd, A.; Menz, G. Mapping mangroves extend on the Red Sea coastline in Egypt using polarimetric SAR and high resolution optical remote sensing data. Sustainability 2018, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Clerici, N.; Valbuena Calderón, C.A.; Posada, J.M. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Numbisi, F.N.; Van Coillie, F.; De Wulf, R. Multi-date Sentinel 1 SAR image textures discriminate perennial agroforests in a tropical forest-savanna transition landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Image and Signal Processing for Remote Sensing XXIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10427, p. 1042704. [Google Scholar]
- Kuc, G.; Chormański, J. Sentinel-2 imagery for mapping and monitoring imperviousness in urban areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42(1/W2), 43–47. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated extraction of surface water extent from Sentinel-1 data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Pham-Duc, B.; Prigent, C.; Aires, F. Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water 2017, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S. A neural network approach to flood mapping using satellite imagery. Comput. Inform. 2012, 29, 1013–1024. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Foody, G. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Hawass, N.E. Comparing the sensitivities and specificities of two diagnostic procedures performed on the same group of patients. Br. J. Radiol. 1997, 70, 360–366. [Google Scholar] [CrossRef]
- Mallinis, G.; Galidaki, G.; Gitas, I. A comparative analysis of EO-1 Hyperion, Quickbird and Landsat TM imagery for fuel type mapping of a typical Mediterranean landscape. Remote Sens. 2014, 6, 1684–1704. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, E.M.; Mutanga, O.; Adam, E.; Ismail, R. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 48–59. [Google Scholar] [CrossRef]
- Omer, G.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E. Exploring the utility of the additional WorldView-2 bands and support vector machines in mapping land use/land cover in a fragmented ecosystem, South Africa. S. Afr. J. Geomat. 2015, 4, 414–433. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Wilson, E.H.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Forman, R.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Potere, D.; Schneider, A.; Angel, S.; Civco, D.L. Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Holobâcă, I.H.; Ivan, K.; Alexe, M. Extracting built-up areas from Sentinel-1 imagery using land-cover classification and texture analysis. Int. J. Remote Sens. 2019, 40, 8054–8069. [Google Scholar] [CrossRef]
- Esch, T.; Roth, A. Semi-automated classification of urban areas by means of high resolution radar data. In Proceedings of the ISPRS 2004 Congress, Istanbul, Turkey, 12–23 July 2004; pp. 478–482. [Google Scholar]
- Lu, D.; Hetrick, S.; Moran, E. Impervious surface mapping with Quickbird imagery. Int. J. Remote Sens. 2011, 32, 2519–2533. [Google Scholar] [CrossRef] [Green Version]
- Shaban, M.A.; Dikshit, O. Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Gong, P.; Shi, P. Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis. Int. J. Remote Sens. 2003, 24, 4137–4160. [Google Scholar] [CrossRef]
- Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 733–745. [Google Scholar] [CrossRef]
- Agüera, F.; Aguilar, F.J.; Aguilar, M.A. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J. Photogramm. Remote Sens. 2008, 63, 635–646. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Pimple, U.; Sitthi, A.; Simonetti, D.; Pungkul, S.; Leadprathom, K.; Chidthaisong, A. Topographic correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest classification in the mountainous terrain of Northeast Thailand. Sustainability 2017, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Katagi, J.; Nasahara, K.N.; Kobayashi, K.; Dotsu, M.; Tadono, T. Reduction of misclassification caused by mountain shadow in a high resolution land use and land cover map using multi-temporal optical images. J. Remote Sens. Soc. Jpn. 2018, 38, 30–34. [Google Scholar]
- Ji, L.; Gong, P.; Geng, X.; Zhao, Y. Improving the accuracy of the water surface cover type in the 30 m FROM-GLC product. Remote Sens. 2015, 7, 13507–13527. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Zhang, Y.; Zhong, M.; Dey, V. Object-based classification of urban areas using VHR imagery and height points ancillary data. Remote Sens. 2012, 4, 2256–2276. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, P.; Wang, J. Urban built-up area extraction from Landsat TM/ETM+ images using spectral information and multivariate texture. Remote Sens. 2014, 6, 7339–7359. [Google Scholar] [CrossRef] [Green Version]
- Guindon, B.; Zhang, Y.; Dillabaugh, C. Landsat urban mapping based on a combined spectral–spatial methodology. Remote Sens. Environ. 2004, 92, 218–232. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A. Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 16–26. [Google Scholar] [CrossRef]
- Karathanassi, V.; Iossifidis, C.H.; Rokos, D. A texture-based classification method for classifying built areas according to their density. Int. J. Remote Sens. 2000, 21, 1807–1823. [Google Scholar] [CrossRef]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. [Google Scholar] [CrossRef]
- Dekker, R.J. Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1950–1958. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Kefi, M.; Kumar, P.; Masago, Y.; Mishra, B.K. Sustainable urban water management: Application for integrated assessment in Southeast Asia. Sustainability 2018, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- UN Water. UN-Water Annual Report 2008. Available online: http://www.unwater.org/downloads/annualreport2008.pdf (accessed on 5 April 2021).
- Iqbal, M.M.; Shoaib, M.; Agwanda, P.; Lee, J.L. Modeling approach for water-quality management to control pollution concentration: A case study of Ravi River, Punjab, Pakistan. Water 2018, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Mahfooz, Y.; Yasar, A.; Tabinda, A.B.; Sohail, M.T.; Siddiqua, A.; Mahmood, S. Quantification of the River Ravi pollution load and oxidation pond treatment to improve the drain water quality. Desalin Water Treat 2017, 85, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Haider, H.; Ali, W. Evaluation of water quality management alternatives to control dissolved oxygen and un-ionized ammonia for Ravi River in Pakistan. Environ. Model. Assess. 2013, 18, 451–469. [Google Scholar] [CrossRef]
- Hanif, N.; Eqani, S.A.M.A.S.; Ali, S.M.; Cincinelli, A.; Ali, N.; Katsoyiannis, I.A.; Tanveer, Z.I.; Bokhari, H. Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. J. Geochem. Explor. 2016, 165, 62–70. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Understanding the summertime warming in canyon and non-canyon surfaces. Urban Clim. 2021, 38, 100916. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Urban evapotranspiration of Green Spaces in Arid Regions through Two Established Ap-proaches: A Review of Key Drivers, Advancements, Limitations, and Potential Opportunities. Urban Water J. 2021, 18, 115–127. [Google Scholar] [CrossRef]
- Sadiq Khan, M.; Ullah, S.; Sun, T.; Rehman, A.U.; Chen, L. Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [Google Scholar] [CrossRef]
Data | Purpose | Source | Spatial Resolution | Temporal Resolution | Sensor |
---|---|---|---|---|---|
S-1A | classification and fusion | Copernicus Open Access Hub | 10 m | 6 days | SAR |
S-2A | classification and fusion | Copernicus Open Access Hub | 10 m, 20 m, 60 m | 5 days | MSI |
DEM | terrain correction | USGS | 1 arc-sec | - | SRTM |
high resolution imagery | pixel based validation & comparative analysis | Google Earth Pro | 15 m–15 cm | - | satellite images, aerial photos, and GIS data |
global land cover maps | quantitative validation | Copernicus Land Service | 100 m | 1 year | Proba-V |
SH 1 | FA 1 | RI 1 | KH 1 | MT 1 | SHK 1 | GN 1 | BH 1 | |
---|---|---|---|---|---|---|---|---|
oN | 30.727 | 31.585 | 33.797 | 30.342 | 30.32 | 31.76 | 32.285 | 29.45 |
oE | 73.176 | 73.327 | 73.383 | 71.986 | 71.66 | 74.09 | 74.275 | 71.78 |
S.no. | Land Cover Type | Remarks |
---|---|---|
1 | water | All water bodies including river, canal, small ponds and treatment plants |
2 | bare soil | Open spaces including fallow land, areas cleared out for construction |
3 | vegetation | Grassland, trees, and crops. |
4 | built-up | Cluster of houses, commercial areas, road, pathways, parking lots, and runways. |
2016 | 2020 | |||
City | Sentinel 1 | Sentinel 2 | Sentinel 1 | Sentinel 2 |
Sahiwal | 21 February | 1 February | 12 February | 10 February |
Faisalabad | 5 February | 1 February | 8 February | 1 March |
Rawalpindi-Islamabad | 16 February | 1 February | 1 February | 25 January |
Khanewal | 21 February | 1 February | 12 February | 10 February |
Multan | 21 February | 1 February | 1 February | 10 February |
Sheikhupura | 31 March | 29 March | 8 February | 7 February |
Gujranwala | 31 March | 29 March | 20 February | 7 February |
Bahawalpur | 21 February | 1 February | 2 February | 4 February |
Band Names (S-2A) | Central Wavelength (μm) | Spatial Resolution (m) |
---|---|---|
B1-Coastal Aerosol | 0.443 | 60 |
B2-Blue | 0.492 | 10 |
B3-Green | 0.559 | 10 |
B4-Red | 0.664 | 10 |
B5-Red Edge | 0.704 | 20 |
B6-Red Edge | 0.74 | 20 |
B7-Red Edge | 0.782 | 20 |
B8-NIR | 0.832 | 10 |
B8A-Narrow NIR | 0.864 | 20 |
B9-Water Vapor | 0.945 | 60 |
B10-SWIR Cirrus | 1.373 | 60 |
B11-SWIR | 1.613 | 20 |
B12-SWIR | 2.219 | 20 |
City | RI | MT | FA | GN | BH | SH | SHK | KH |
---|---|---|---|---|---|---|---|---|
Training | 22,000 | 43,000 | 17,000 | 38,000 | 21,000 | 15,000 | 15,000 | 10,000 |
Validation | 20,000 | 27,000 | 15,000 | 21,000 | 15,000 | 9000 | 11,000 | 8000 |
2016 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Optical | Fusion | Optical | Fusion | |||||
OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | |
Rawalpindi–Islamabad | 88 | 0.84 | 90 | 0.85 | 79 | 0.71 | 88 | 0.83 |
Multan | 93.8 | 0.9 | 95.8 | 0.94 | 95.5 | 0.92 | 97 | 0.94 |
Faisalabad | 94.1 | 0.9 | 98.6 | 0.97 | 93.7 | 0.89 | 95 | 0.91 |
Gujranwala | 95.2 | 0.93 | 96.6 | 0.95 | 95.9 | 0.91 | 97.5 | 0.94 |
Bahawalpur | 95.8 | 0.92 | 96.5 | 0.94 | 94.4 | 0.92 | 97 | 0.96 |
Sahiwal | 94.2 | 0.88 | 97.1 | 0.94 | 97.2 | 0.95 | 97.5 | 0.96 |
Sheikhupura | 95.9 | 0.93 | 97.1 | 0.95 | 95 | 0.9 | 95.3 | 0.91 |
Khanewal | 95.5 | 0.92 | 96.6 | 0.94 | 85.9 | 0.75 | 88.1 | 0.8 |
Impervious Surface Area | 2016 | |
---|---|---|
Fused | CLS | |
Rawalpindi–Islamabad | 324.9 km2 | 347.8 km2 |
Multan | 158 km2 | 167 km2 |
Faisalabad | 135 km2 | 151.32 km2 |
Gujranwala | 117.6 km2 | 138.4 km2 |
Bahawalpur | 44.45 km2 | 48.06 km2 |
Sahiwal | 36.1 km2 | 35.5 km2 |
Sheikhupura | 30.2 km2 | 30.37 km2 |
Khanewal | 14.6 km2 | 14.8 km2 |
City | ꭓ2-Value |
---|---|
Rawalpindi–Islamabad | 16.92 |
Multan | 25.22 |
Faisalabad | 16.83 |
Gujranwala | 56.01 |
Bahawalpur | 9.67 |
Sahiwal | 169.75 |
Sheikhupura | 137.9 |
Khanewal | 73.67 |
RI | MT | FA | GN | BH | SH | SHK | KH | |
---|---|---|---|---|---|---|---|---|
Built-up cover (km2) 2016 | 324.9 | 158 | 135 | 117.6 | 44.45 | 36.1 | 30.2 | 14.6 |
Built-up cover (km2) 2020 | 358.1 | 168 | 148 | 127.1 | 49.6 | 39 | 33 | 14.9 |
Cumulative growth (km2) | 33.2 | 10 | 13 | 9.5 | 5.2 | 2.9 | 2.8 | 0.3 |
Growth Rate (km2/year) | 8.3 | 2.5 | 3.25 | 2.4 | 1.3 | 0.8 | 0.7 | 0.1 |
Cumulative growth (%) | 10.2 | 6.3 | 9.7 | 8.1 | 11.8 | 8.3 | 9.3 | 2.1 |
Growth Rate (%/year) | 2.5 | 1.6 | 2.4 | 2 | 2.9 | 2.1 | 2.3 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.; Stephen, H.; Ahmad, S. Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier. Remote Sens. 2021, 13, 3040. https://doi.org/10.3390/rs13153040
Shrestha B, Stephen H, Ahmad S. Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier. Remote Sensing. 2021; 13(15):3040. https://doi.org/10.3390/rs13153040
Chicago/Turabian StyleShrestha, Binita, Haroon Stephen, and Sajjad Ahmad. 2021. "Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier" Remote Sensing 13, no. 15: 3040. https://doi.org/10.3390/rs13153040
APA StyleShrestha, B., Stephen, H., & Ahmad, S. (2021). Impervious Surfaces Mapping at City Scale by Fusion of Radar and Optical Data through a Random Forest Classifier. Remote Sensing, 13(15), 3040. https://doi.org/10.3390/rs13153040