Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation
<p>Surface chl at L4 during 2009 as observed from satellite (blue with assigned error bars) and in situ HPLC analysis (red).</p> "> Figure 2
<p>Time evolution of (<b>a</b>) Six hourly SST as simulated with GOTM (solid line) and observed from the L4 buoy (dots) and (<b>b</b>) velocity magnitude averaged between 1 and 2 m from the sea bed for the model and observations. The one to one plot with all data used in calculating the statistics is included in the left top corner. The axes have the same range as the main graph.</p> "> Figure 3
<p>Surface evolution of total chl-a for (<b>a</b>) 2008 and (<b>b</b>) 2009. The observations correspond to the red dots while the model is the solid line. The one to one plot between observations and model results is included as a thumbnail to illustrate the correspondence between the datasets.</p> "> Figure 4
<p>Evolution at 10 m of diatom’s Biomass for (<b>a</b>) 2008, (<b>b</b>) 2009 and (<b>c</b>) flagellates for 2009. The observations correspond to the red dots while the model is the solid line. The one to one plot between observations and model results is included as a thumbnail to illustrate the correspondence between the datasets.</p> "> Figure 5
<p>Evolution at 10 m of total phytoplankton net production. The observations correspond to the red dots while the model is the solid line. The one to one plot between observations and model results is included as a thumbnail to illustrate the correspondence between the datasets.</p> "> Figure 6
<p>Evolution at the surface of (<b>a</b>) dissolved silicate and (<b>b</b>) dissolved nitrate concentration during 2009. The observations correspond to the red dots while the model is the solid line. The errors associated with the observations are included as error bars. In most cases, the errors are very small, and the error bars are smaller than the marker and are not visible. The one to one plot between observations and model results is included as a thumbnail to illustrate the correspondence between the datasets.</p> "> Figure 7
<p>Evolution at 2 m of (<b>a</b>) in-water CO<sub>2</sub> partial pressure and (<b>b</b>) in-water pH. The observations correspond to the red dots while the model is the solid line. The one to one plot between observations and model results is included as a thumbnail to illustrate the correspondence between the datasets.</p> "> Figure 8
<p>Examples of near-surface profiles of temperature for days 18–20 May 2009 for Experiment (<b>a</b>) A and (<b>b</b>) B. During those days, average night–day temperature differences were of the order of 0.5 °C. Wind speed averaged 9 <math display="inline"><semantics> <mrow> <msup> <mi>ms</mi> <mstyle scriptlevel="2" displaystyle="false"> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mstyle> </msup> <mspace width="0.166667em"/> <mspace width="0.166667em"/> </mrow> </semantics></math>. Black lines represents night time profiles (03 and 21 h) while red lines represent day time profiles (09 and 15 h).</p> "> Figure 9
<p>Time evolution of results from Experiment D for (<b>a</b>) 10 m chl-a and in situ surface chl-a observations (red dots) and (<b>b</b>) mixed layer pCO<sub>2</sub> and in situ observations (black). The solid black line corresponds to the model results from Experiment A. The thicker blue line corresponds to the ensemble mean while the thin blue line corresponds to one standard deviation.</p> "> Figure 10
<p>Time evolution of (<b>a</b>) near-surface pCO<sub>2</sub>, (<b>b</b>) air–sea flux of CO<sub>2</sub> and (<b>c</b>) water column average of Gross Production and Community Respiration ratio for Experiments A, B and D. The black line in at 385 in (<b>a</b>) represents the atmospheric pCO<sub>2</sub> value used in the simulations.</p> "> Figure 11
<p>Distribution with depth of the averaged 2008–2009 root mean square error between Experiment A and B for selected variables. The values are percentage change with respect to the maximum value for each variable. The higher values in the top 10 m indicates differences between the two models are concentrated there.</p> "> Figure 12
<p>Time evolution for 2009 of the cross-correlation matrix across ensemble members for Experiment D. The colors indicate the correlation of each variable with the top 10 m mean of total chl-a.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Physics Model Description: Gotm
2.2. Biological Model Description: Ersem
2.3. Observations
2.3.1. In Situ Biological Measurements
2.3.2. Satellite Observations
2.4. Experiments
2.4.1. Experiment A
2.4.2. Experiment B
2.4.3. Experiment C
2.4.4. Experiment D
2.4.4.1. The Ensemble Kalman filter (EnKF)
2.4.4.2. Model Errors
2.4.4.3. Observational Errors
3. Results
3.1. Reference Simulation; Experiment A
3.1.1. Physics
3.1.2. Biogeochemistry
3.2. Enhance Surface Resolution; Experiment B
3.3. Evaluation of Surface Slicks; Experiment C
3.4. Evaluation of Data Assimilation; Experiment D
4. Discussion
4.1. Ecosystem Models Predictive Capabilities of CO2
4.2. Sensitivity of Modeled CO2 to SST Diurnal Cycle
4.3. Sensitivity of Modeled CO2 to Surface Surfactants
4.4. Sensitivity of Modeled CO2 to the Assimilation of chl-a
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Exp | Year | Variable | Depth | Corr | p Value | RMSE | Mean | Std | N |
---|---|---|---|---|---|---|---|---|---|
Exp A | 2008 | Biomass | 10 | 0.70 * | 0.000 | 99.59 | 21.91 | 42.81 | 40 |
Exp A | 2009 | Biomass | 10 | 0.76 * | 0.000 | 119.83 | 17.85 | 33.54 | 41 |
Exp B | 2008 | Biomass | 10 | 0.67 * | 0.000 | 98.91 | 19.95 | 37.18 | 40 |
Exp B | 2009 | Biomass | 10 | 0.75 * | 0.000 | 120.41 | 17.36 | 34.76 | 41 |
Exp C | 2008 | Biomass | 10 | 0.70 * | 0.000 | 99.71 | 21.99 | 43.05 | 40 |
Exp C | 2009 | Biomass | 10 | 0.76 * | 0.000 | 119.83 | 17.85 | 33.54 | 41 |
Exp D | 2009 | Biomass | 10 | 0.49 * | 0.001 | 119.58 | 23.32 | 37.84 | 42 |
Exp A | 2009 | Chl-a | 0 | 0.47 * | 0.003 | 1.28 | 0.78 | 0.95 | 38 |
Exp B | 2009 | Chl-a | 0 | 0.50 * | 0.002 | 1.29 | 0.81 | 1.00 | 38 |
Exp C | 2009 | Chl-a | 0 | 0.47 * | 0.003 | 1.28 | 0.78 | 0.95 | 38 |
Exp D | 2009 | Chl-a | 0 | 0.46 * | 0.003 | 1.39 | 0.95 | 1.15 | 40 |
Exp A | 2008 | Chl-a | 10 | 0.43 * | 0.005 | 2.42 | 0.65 | 0.87 | 41 |
Exp B | 2008 | Chl-a | 10 | 0.41 * | 0.008 | 2.42 | 0.66 | 0.88 | 41 |
Exp C | 2008 | Chl-a | 10 | 0.43 * | 0.005 | 2.42 | 0.66 | 0.88 | 41 |
Exp A | 2009 | Chl-a | 10 | 0.45 * | 0.004 | 1.27 | 0.76 | 0.95 | 39 |
Exp B | 2009 | Chl-a | 10 | 0.48 * | 0.002 | 1.28 | 0.79 | 1.00 | 39 |
Exp C | 2009 | Chl-a | 10 | 0.45 * | 0.004 | 1.27 | 0.76 | 0.95 | 39 |
Exp D | 2009 | Chl-a | 10 | 0.50 * | 0.002 | 1.29 | 0.95 | 1.09 | 37 |
Exp A | 2009 | Chl-a | 50 | 0.63 * | 0.000 | 0.45 | 0.29 | 0.46 | 33 |
Exp B | 2009 | Chl-a | 50 | 0.63 * | 0.000 | 0.45 | 0.28 | 0.45 | 33 |
Exp C | 2009 | Chl-a | 50 | 0.63 * | 0.000 | 0.45 | 0.29 | 0.46 | 33 |
Exp D | 2009 | Chl-a | 50 | 0.32 | 0.054 | 0.46 | 0.30 | 0.21 | 36 |
Exp A | 2009 | Primary production | 10 | 0.40 * | 0.015 | 23.51 | 17.50 | 23.95 | 36 |
Exp B | 2009 | Primary production | 10 | 0.39 * | 0.018 | 17.22 | 10.34 | 15.05 | 36 |
Exp C | 2009 | Primary production | 10 | 0.40 * | 0.015 | 23.51 | 17.50 | 23.95 | 36 |
Exp D | 2009 | Primary production | 10 | 0.42 * | 0.010 | 32.16 | 23.81 | 32.09 | 38 |
Exp | Year | Variable | Depth | Corr | p Value | RMSE | Mean | Std | N |
---|---|---|---|---|---|---|---|---|---|
Exp A | 2008 | Diatoms | 10 | 0.66 * | 0.000 | 53.38 | 16.11 | 38.63 | 40 |
Exp A | 2009 | Diatoms | 10 | 0.62 * | 0.000 | 27.65 | 12.21 | 30.43 | 41 |
Exp B | 2008 | Diatoms | 10 | 0.64 * | 0.000 | 49.85 | 14.37 | 33.20 | 40 |
Exp B | 2009 | Diatoms | 10 | 0.61 * | 0.000 | 29.48 | 12.18 | 32.00 | 41 |
Exp C | 2008 | Diatoms | 10 | 0.66 * | 0.000 | 53.55 | 16.18 | 38.84 | 40 |
Exp C | 2009 | Diatoms | 10 | 0.62 * | 0.000 | 27.64 | 12.21 | 30.43 | 41 |
Exp D | 2009 | Diatoms | 10 | 0.13 | 0.415 | 33.21 | 14.93 | 32.09 | 42 |
Exp A | 2008 | Flagellates | 10 | 0.29 | 0.067 | 6.34 | 3.49 | 5.06 | 40 |
Exp A | 2009 | Flagellates | 10 | 0.76 * | 0.000 | 7.23 | 3.02 | 3.81 | 41 |
Exp B | 2008 | Flagellates | 10 | 0.29 | 0.068 | 6.18 | 3.22 | 4.54 | 40 |
Exp B | 2009 | Flagellates | 10 | 0.76 * | 0.000 | 7.38 | 2.83 | 3.56 | 41 |
Exp C | 2008 | Flagellates | 10 | 0.29 | 0.071 | 6.35 | 3.51 | 5.09 | 40 |
Exp C | 2009 | Flagellates | 10 | 0.76 * | 0.000 | 7.23 | 3.02 | 3.81 | 41 |
Exp D | 2009 | Flagellates | 10 | 0.48 * | 0.001 | 7.34 | 5.12 | 7.45 | 42 |
Exp | Year | Variable | Depth | Corr | p Value | RMSE | Mean | Std | N |
---|---|---|---|---|---|---|---|---|---|
Exp A | 2008 | Phosphate | 1 | 0.84 * | 0.000 | 0.17 | 0.39 | 0.16 | 39 |
Exp A | 2009 | Phosphate | 1 | 0.90 * | 0.000 | 0.19 | 0.39 | 0.16 | 41 |
Exp B | 2008 | Phosphate | 1 | 0.87 * | 0.000 | 0.19 | 0.42 | 0.16 | 39 |
Exp B | 2009 | Phosphate | 1 | 0.90 * | 0.000 | 0.21 | 0.42 | 0.16 | 41 |
Exp C | 2008 | Phosphate | 1 | 0.84 * | 0.000 | 0.17 | 0.39 | 0.16 | 39 |
Exp C | 2009 | Phosphate | 1 | 0.90 * | 0.000 | 0.19 | 0.39 | 0.16 | 41 |
Exp D | 2009 | Phosphate | 1 | 0.88 * | 0.000 | 0.24 | 0.47 | 0.18 | 43 |
Exp A | 2008 | Nitrate | 1 | 0.90 * | 0.000 | 2.29 | 5.04 | 2.68 | 40 |
Exp A | 2009 | Nitrate | 1 | 0.90 * | 0.000 | 2.54 | 4.99 | 2.79 | 42 |
Exp B | 2008 | Nitrate | 1 | 0.92 * | 0.000 | 2.66 | 5.50 | 2.65 | 40 |
Exp B | 2009 | Nitrate | 1 | 0.88 * | 0.000 | 2.89 | 5.37 | 2.75 | 42 |
Exp C | 2008 | Nitrate | 1 | 0.90 * | 0.000 | 2.29 | 5.04 | 2.68 | 40 |
Exp C | 2009 | Nitrate | 1 | 0.90 * | 0.000 | 2.54 | 4.99 | 2.79 | 42 |
Exp D | 2009 | Nitrate | 1 | 0.90 * | 0.000 | 2.40 | 4.98 | 3.00 | 44 |
Exp A | 2008 | Ammonium | 1 | −0.23 | 0.156 | 0.59 | 0.46 | 0.35 | 39 |
Exp A | 2009 | Ammonium | 1 | −0.46 * | 0.002 | 0.63 | 0.46 | 0.38 | 41 |
Exp B | 2008 | Ammonium | 1 | −0.35 * | 0.031 | 0.70 | 0.51 | 0.45 | 39 |
Exp B | 2009 | Ammonium | 1 | −0.46 * | 0.003 | 0.71 | 0.51 | 0.48 | 41 |
Exp C | 2008 | Ammonium | 1 | −0.23 | 0.156 | 0.59 | 0.47 | 0.36 | 39 |
Exp C | 2009 | Ammonium | 1 | −0.46 * | 0.002 | 0.63 | 0.46 | 0.38 | 41 |
Exp D | 2009 | Ammonium | 1 | −0.40 * | 0.008 | 0.67 | 0.61 | 0.40 | 43 |
Exp A | 2008 | Silicate | 1 | 0.82 * | 0.000 | 1.95 | 4.42 | 2.04 | 37 |
Exp A | 2009 | Silicate | 1 | 0.86 * | 0.000 | 2.17 | 4.47 | 1.97 | 41 |
Exp B | 2008 | Silicate | 1 | 0.83 * | 0.000 | 1.99 | 4.49 | 1.94 | 37 |
Exp B | 2009 | Silicate | 1 | 0.86 * | 0.000 | 2.15 | 4.45 | 1.98 | 41 |
Exp C | 2008 | Silicate | 1 | 0.82 * | 0.000 | 1.95 | 4.42 | 2.03 | 37 |
Exp C | 2009 | Silicate | 1 | 0.86 * | 0.000 | 2.17 | 4.47 | 1.97 | 41 |
Exp D | 2009 | Silicate | 1 | 0.86 * | 0.000 | 1.73 | 4.15 | 2.04 | 43 |
Exp | Year | Variable | Depth | Corr | p Value | RMSE | Mean | Std | N |
---|---|---|---|---|---|---|---|---|---|
Exp A | 2008 | DIC | 2 | 0.46 * | 0.011 | 91.08 | 2162.59 | 13.47 | 30 |
Exp A | 2009 | DIC | 2 | 0.47 * | 0.020 | 79.90 | 2140.67 | 21.76 | 25 |
Exp B | 2008 | DIC | 2 | 0.51 * | 0.005 | 100.20 | 2172.67 | 14.11 | 30 |
Exp B | 2009 | DIC | 2 | 0.54 * | 0.006 | 78.60 | 2138.66 | 26.56 | 25 |
Exp C | 2008 | DIC | 2 | 0.46 * | 0.010 | 90.88 | 2162.38 | 13.50 | 30 |
Exp C | 2009 | DIC | 2 | 0.47 * | 0.020 | 79.85 | 2140.63 | 21.78 | 25 |
Exp D | 2009 | DIC | 2 | 0.30 * | 0.040 | 61.35 | 2117.08 | 13.29 | 46 |
Exp A | 2008 | pCO2 | 2 | 0.52 * | 0.003 | 74.81 | 401.57 | 31.42 | 30 |
Exp A | 2009 | pCO2 | 2 | 0.41 * | 0.042 | 42.53 | 353.65 | 28.97 | 25 |
Exp B | 2008 | pCO2 | 2 | 0.62 * | 0.000 | 88.12 | 425.92 | 31.84 | 30 |
Exp B | 2009 | pCO2 | 2 | 0.35 | 0.086 | 44.64 | 350.10 | 33.64 | 25 |
Exp C | 2008 | pCO2 | 2 | 0.52 * | 0.003 | 74.51 | 401.13 | 31.45 | 30 |
Exp C | 2009 | pCO2 | 2 | 0.41 * | 0.042 | 42.48 | 353.57 | 28.98 | 25 |
Exp D | 2009 | pCO2 | 2 | −0.20 | 0.176 | 37.39 | 329.72 | 17.27 | 46 |
Exp A | 2008 | pH | 2 | 0.53 * | 0.002 | 0.09 | 8.04 | 0.03 | 30 |
Exp A | 2009 | pH | 2 | 0.38 | 0.060 | 0.06 | 8.09 | 0.03 | 25 |
Exp B | 2008 | pH | 2 | 0.63 * | 0.000 | 0.11 | 8.02 | 0.03 | 30 |
Exp B | 2009 | pH | 2 | 0.33 | 0.108 | 0.06 | 8.09 | 0.03 | 25 |
Exp C | 2008 | pH | 2 | 0.53 * | 0.002 | 0.09 | 8.04 | 0.03 | 30 |
Exp C | 2009 | pH | 2 | 0.38 | 0.060 | 0.06 | 8.09 | 0.03 | 25 |
Exp D | 2009 | pH | 2 | −0.22 | 0.143 | 0.05 | 8.12 | 0.02 | 46 |
Exp A | 2009 | SST | 1.5 | 0.94 * | 0.000 | 0.54 | 13.74 | 2.13 | 903 |
Exp B | 2009 | SST | 1.5 | 0.93 * | 0.000 | 0.53 | 13.82 | 2.15 | 903 |
Exp C | 2009 | SST | 1.5 | 0.94 * | 0.000 | 0.54 | 13.74 | 2.13 | 903 |
Exp D | 2009 | SST | 1.5 | 0.91 * | 0.000 | 0.57 | 13.91 | 2.13 | 4809 |
References
- Caldeira, K.; Wickett, M.E. Anthropogenic carbon and pH. Nature 2003, 425, 365. [Google Scholar] [CrossRef]
- Sabine, C.; Feely, R.; Gruber, N.; Key, R.; Lee, K.; Bullister, J.; Wanninkhof, R.; Wong, C.; Wallace, D.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Schuster, U.; Bakker, D.; Bates, N.; Corbíre, A.; GonzálezDavila, M.; Friedrich, T.; Hauck, J.; Heinze, C.; Johannessen, T.; et al. Tracking the variable North Atlantic sink for atmospheric CO2. Science 2009, 326, 1391–1393. [Google Scholar] [CrossRef]
- Zeebe, R.; Wolf-Gradow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes; Elsevier Science Publishers: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Blackford, J.C. Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective. J. Mar. Syst. 2010, 81, 12–18. [Google Scholar] [CrossRef]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackford, J.; Gilbert, F. Ph variability and CO2 induced acidification in the North Sea. J. Mar. Syst. 2007, 64, 229–241. [Google Scholar] [CrossRef]
- Artioli, Y.; Blackford, J.C.; Butenschön, M.; Holt, J.T.; Wakelin, S.L.; Thomas, H.; Borges, A.V.; Allen, J.I. The carbonate system in the North Sea: Sensitivity and model validation. J. Mar. Syst. 2012, 102–104, 1–13. [Google Scholar] [CrossRef]
- Thomas, H.; Bozec, Y.; De Baar, H.J.W.; Elkalay, K.; Frankignoulle, M.; Schiettecatte, L.S.; Kattner, G.; Borges, A.V. The carbon budget of the North Sea. Biogeosciences 2005, 2, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Schiettecatte, L.S.; Suykens, K.; Koné, Y.J.M.; Shadwick, E.H.; Prowe, A.E.F.; Bozec, Y.; De Baar, H.J.W.; Borges, A.V. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences 2009, 6, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Gypens, N.; Lacroix, G.; Lancelot, C.; Borges, A. Seasonal and inter-annual variability of air–sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Prog. Oceanogr. 2011, 88, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Rippeth, T.P.; Lincoln, B.J.; Kennedy, H.A.; Palmer, M.R.; Sharples, J.; Williams, C.A.J. Impact of vertical mixing on sea surface pCO2 in temperate seasonally stratified shelf seas. J. Geophys. Res. Ocean. 2014, 119, 3868–3882. [Google Scholar] [CrossRef] [Green Version]
- Ward, B.; Wanninkhof, R.; McGillis, W.R.; Jessup, A.T.; DeGrandpre, M.D.; Hare, J.E.; Edson, J.B. Biases in the air-sea flux of {CO}2 resulting from ocean surface temperature gradients. J. Geophys. Res. Ocean. 2004, 109, C08S08. [Google Scholar] [CrossRef] [Green Version]
- Woolf, D.K.; Land, P.E.; Shutler, J.D.; Goddijn-Murphy, L.M.; Donlon, C.J. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients. J. Geophys. Res. Ocean. 2016, 121, 1229–1248. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Allen, J.; Figueiras, F. Sequential data assimilation in an upwelling influenced estuary. J. Mar. Syst. 2006, 60, 317–329. [Google Scholar] [CrossRef]
- Widdicombe, C.E.; Eloire, D.; Harbour, D.; Harris, R.P. Long-term phytoplankton community dynamics in the Western English Channel. J. Plankton Res. 2010, 32, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Smyth, T.J.; Fishwick, J.R.; AL-Moosawi, L.; Cummings, D.G.; Harris, C.; Kitidis, V.; Rees, A.; Martinez-Vicente, V.; Woodward, E.M.S. A broad spatio-temporal view of the Western English Channel observatory. J. Plankton Res. 2010, 32, 585–601. [Google Scholar] [CrossRef] [Green Version]
- Smyth, T.J.; Fishwick, J.R.; Gallienne, C.P.; Stephens, J.A.; Bale, A.J. Technology, Design, and Operation of an Autonomous Buoy System in the Western English Channel. J. Atmos. Ocean. Technol. 2011, 27, 2056–2064. [Google Scholar] [CrossRef]
- Southward, A.J.; Langmead, O.; Hardman-Mountford, N.J.; Aiken, J.; Boalch, G.T.; Dando, P.R.; Genner, M.J.; Joint, I.; Kendall, M.A.; Halliday, N.C.; et al. Long-Term Oceanographic and Ecological Research in the Western English Channel. In Advances in Marine Biology; Academic Press: Amsterdam, The Netherlands, 2004; Volume 47, pp. 1–105. [Google Scholar] [CrossRef]
- Lindeque, P.K.; Parry, H.E.; Harmer, R.A.; Somerfield, P.J.; Atkinson, A. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages. PLoS ONE 2013, 8, e81327. [Google Scholar] [CrossRef]
- Burchard, H.; Bolding, K.; Villarreal, M.R. GOTM—A General Ocean Turbulence Model. Theory, Applications and Test Cases; Technical Report EUR 18745 EN; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Canuto, V.M.; Howard, A.; Cheng, Y.; Dubovikov, M.S. Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 2001, 31, 1413–1426. [Google Scholar] [CrossRef]
- Umlauf, L.; Burchard, H. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Recent Developments in Physical Oceanographic Modelling: Part {II}. Cont. Shelf Res. 2005, 25, 795–827. [Google Scholar] [CrossRef]
- Castellari, S.; Pinardi, N.; Leaman, K. A model study of air sea interactions in the Mediterranean Sea. J. Mar. Syst. 1998, 18, 89–114. [Google Scholar] [CrossRef]
- Kondo, J. Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Siddorn, J.R.; Allen, J.I. A 1-D Ecosystem model: Dependence upon surface heat fluxes. Ann. Geophys. 2003, 21, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.; Siddorn, J.; Blackford, J.; Gilbert, F. Turbulence as a control on the microbial loop in a temperate seasonally stratified marine ecosystem. J. Sea Res. 2004, 52, 1–20. [Google Scholar] [CrossRef]
- Baretta, J.W.; Ebenhöh, W.; Ruardij, P. The European Regional Seas Ecosystem Model, a complex marine ecosystem model. Netherland J. Sea Res. 1995, 33, 233–246. [Google Scholar] [CrossRef]
- Butenschön, M.; Clark, J.; Aldridge, J.N.; Allen, J.I.; Artioli, Y.; Blackford, J.; Bruggeman, J.; Cazenave, P.; Ciavatta, S.; Kay, S.; et al. ERSEM 15.06: A generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. Geosci. Model Dev. 2016, 9, 1293–1339. [Google Scholar] [CrossRef] [Green Version]
- Blackford, J.C.; Allen, J.I.; Gilbert, F.J. Ecosystem dynamics at six contrasting sites: A generic modelling study. J. Mar. Syst. 2004, 52, 191–215. [Google Scholar] [CrossRef]
- Shutler, J.; Smyth, T.; Saux-Picart, S.; Wakelin, S.; Hyder, P.; Orekhov, P.; Grant, M.; Tilstone, G.; Allen, J. Evaluating the ability of a hydrodynamic ecosystem model to capture inter-and intra-annual spatial characteristics of chlorophyll-a in the north east Atlantic. J. Mar. Syst. 2011, 88, 169–182. [Google Scholar] [CrossRef]
- Picart, S.S.; Allen, J.; Butenschön, M.; Artioli, Y.; De Mora, L.; Wakelin, S.; Holt, J. What can ecosystem models tell us about the risk of eutrophication in the North Sea? Clim. Chang. 2014, 132, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Ciavatta, S.; Torres, R.; Saux-Picart, S.; Allen, J.I. Can ocean color assimilation improve biogeochemical hindcasts in shelf seas? J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Ciavatta, S.; Kay, S.; Saux-Picart, S.; Butenschön, M.; Allen, J.I. Decadal reanalysis of biogeochemical indicators and fluxes in the North West European shelf-sea ecosystem. J. Geophys. Res. Ocean. 2016, 121, 1824–1845. [Google Scholar] [CrossRef] [Green Version]
- Woodward, E.; Rees, A. Nutrient distributions in an anticyclonic eddy in the northeast Atlantic Ocean, with reference to nanomolar ammonium concentrations. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 775–793. [Google Scholar] [CrossRef]
- Llewellyn, C.A.; Fishwick, J.R.; Blackford, J.C. Phytoplankton community assemblage in the English Channel: A comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J. Plankton Res. 2005, 27, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Barlow, R.G.; Cummings, D.G.; Gibb, S.W. Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar. Ecol. Prog. Ser. 1997, 161, 303–307. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Mantoura, R.F.C.; Wright, S.W. (Eds.) Qualitative and Quantitative HPLC Analysis of SCOR Reference Algal Cultures; UNESCO: Paris, French, 1997. [Google Scholar]
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Gïbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea; HELCOM, Baltic Marine Environment Protecction: Helsinki, Finland, 2006; Volume 106, p. 144. [Google Scholar]
- Menden-Deuer, S.; Lessard, E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000, 45, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Tilstone, G.H.; Figueiras, F.G.; Lorenzo, L.M.; Arbones, B. Phytoplankton composition, photosynthesis and primary production during different hydrographic conditions at the Northwest Iberian upwelling system. Mar. Ecol. Prog. Ser. 2003, 252, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Platt, T.; Gallegos, C.L.; Harrison, W.G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 1980, 38, 687–701. [Google Scholar]
- Barnes, M.K.; Tilstone, G.H.; Suggett, D.J.; Widdicombe, C.E.; Bruun, J.; Martinez-Vicente, V.; Smyth, T.J. Temporal variability in total, micro- and nano-phytoplankton primary production at a coastal site in the Western English Channel. Prog. Oceanogr. 2015, 137, 470–483. [Google Scholar] [CrossRef] [Green Version]
- Kitidis, V.; Hardman-Mountford, N.J.; Litt, E.; Brown, I.; Cummings, D.; Hartman, S.; Hydes, D.; Fishwick, J.R.; Harris, C.; Martinez-Vicente, V.; et al. Seasonal dynamics of the carbonate system in the Western English Channel. Cont. Shelf Res. 2012, 42, 30–40. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F.; et al. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS Post-Launch Calibration Valid. Anal. Part 2000, 3, 9–23. [Google Scholar]
- Patt, F.S.; Barnes, R.A.; Eplee, R.E., Jr.; Franz, B.A.; Robinson, W.D.; Feldman, G.; Bailey, S.; Sean, W.; Gales, J.; Werdell, P.; et al. Algorithm Updates for the Fourth SeaWiFS Data Reprocessing; Technical Report Tech. Memo. 2003–206892; NASA, Goddard Space Flight Center: Greenbelt, MA, USA, 2003; Volume 22.
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Holt, J.; Proctor, R. The seasonal circulation and volume transport on the northwest European continental shelf: A fine-resolution model study. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Somavilla Cabrillo, R.; GonzálezPola, C.; RuizVillarreal, M.; Lavín Montero, A. Mixed layer depth (MLD) variability in the southern Bay of Biscay. Deepening of winter MLDs concurrent with generalized upper water warming trends? Ocean Dyn. 2011, 61, 1215–1235. [Google Scholar] [CrossRef]
- Pereira, R.; Ashton, I.; Sabbaghzadeh, B.; Shutler, J.D.; Upstill-Goddard, R.C. Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants. Nat. Geosci. 2018, 11, 492–496. [Google Scholar] [CrossRef]
- Salter, M.E.; Upstill-Goddard, R.C.; Nightingale, P.D.; Archer, S.D.; Blomquist, B.; Ho, D.T.; Huebert, B.; Schlosser, P.; Yang, M. Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geastrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Evensen, G. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 2004, 54, 539–560. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Bertino, L.; Evensen, G.; Wackernagel, H. Sequential Data Assimilation Techniques in Oceanography. Int. Stat. Rev. 2003, 71, 223–241. [Google Scholar] [CrossRef]
- Nerger, L.; Gregg, W.W. Improving assimilation of SeaWiFS data by the application of bias correction with a local SEIK filter. J. Mar. Syst. 2008, 73, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Saba, V.S.; Friedrichs, M.A.M.; Antoine, D.; Armstrong, R.A.; Asanuma, I.; Behrenfeld, M.J.; Ciotti, A.M.; Dowell, M.; Hoepffner, N.; Hyde, K.J.W.; et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 2011, 8, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Groom, S.; Martinez-Vicente, V.; Fishwick, J.; Tilstone, G.; Moore, G.; Smyth, T.; Harbour, D. The Western English Channel observatory: Optical characteristics of station L4. Workshop on Coastal Observatories: Best Practice in the Synthesis of Long-Term Observations and Models. J. Mar. Syst. 2009, 77, 278–295. [Google Scholar] [CrossRef]
- Cross, J.; Nimmo-Smith, W.A.M.; Hosegood, P.J.; Torres, R. The role of advection in the distribution of plankton populations at a moored 1-D coastal observatory. Prog. Oceanogr. 2015, 137 Pt B, 342–359. [Google Scholar] [CrossRef] [Green Version]
- Tarran, G.A.; Bruun, J.T. Nanoplankton and picoplankton in the Western English Channel: Abundance and seasonality from 2007–2013. The UK Western Channel Observatory: Integrating pelagic and benthic observations in a shelf sea ecosystem. Prog. Oceanogr. 2015, 137, 446–455. [Google Scholar] [CrossRef]
- Anderson, T.R. Plankton functional type modelling: Running before we can walk? Enter text here. J. Plankton Res. 2005, 27, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, C.D.; Robinson, I.S.; Woolf, D.K.; Donlon, C.J. The response to phase-dependent wind stress and cloud fraction of the diurnal cycle of SST and air–sea CO2 exchange. Ocean Model. 2008, 23, 33–48. [Google Scholar] [CrossRef]
- Nightingale, P.D.; Malin, G.; Law, C.S.; Watson, A.J.; Liss, P.S.; Liddicoat, M.I.; Boutin, J.; Upstill-Goddard, R.C. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 2000, 14, 373–387. [Google Scholar] [CrossRef]
Year | Total Chl | Total C | Silicate | Nitrate | Phosph. | Ammon. | DIC | pCO2 | Ph |
---|---|---|---|---|---|---|---|---|---|
Exp A | |||||||||
2008 | 0.43 * | 0.70 * | 0.82 * | 0.90 * | 0.82 * | −0.23 | 0.46 * | 0.52 * | 0.53 * |
2009 | 0.45 * | 0.76 * | 0.86 * | 0.90 * | 0.77 * | −0.46 * | 0.47 * | 0.41 * | 0.38 |
Exp B | |||||||||
2008 | 0.41 * | 0.67 * | 0.83 * | 0.92 * | 0.87 * | −0.35 * | 0.51 * | 0.62 * | 0.63 * |
2009 | 0.48 * | 0.75 * | 0.86 * | 0.88 * | 0.90 * | −0.46 * | 0.54 * | 0.35 * | 0.33 * |
Exp C | |||||||||
2008 | 0.43 * | 0.70 * | 0.82 * | 0.90 * | 0.82 * | −0.23 | 0.46 * | 0.52 * | 0.53 * |
2009 | 0.45 * | 0.76 * | 0.86 * | 0.90 * | 0.77 * | −0.46 * | 0.47 * | 0.41 * | 0.38 |
Exp D | |||||||||
2009 | 0.46 * | 0.49 * | 0.86 * | 0.90 * | 0.88 * | −0.40 * | 0.30 * | −0.20 * | −0.22 |
Experiment | Air-Sea Flux of CO2 in molC/m2/day | |
---|---|---|
2008 | 2009 | |
Exp A | −1.8 | −0.3 |
Exp B | −2.8 | −0.6 |
Exp C | −1.8 | −0.3 |
Exp D | 1.3 ± 1.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, R.; Artioli, Y.; Kitidis, V.; Ciavatta, S.; Ruiz-Villarreal, M.; Shutler, J.; Polimene, L.; Martinez, V.; Widdicombe, C.; Woodward, E.M.S.; et al. Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation. Remote Sens. 2020, 12, 2038. https://doi.org/10.3390/rs12122038
Torres R, Artioli Y, Kitidis V, Ciavatta S, Ruiz-Villarreal M, Shutler J, Polimene L, Martinez V, Widdicombe C, Woodward EMS, et al. Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation. Remote Sensing. 2020; 12(12):2038. https://doi.org/10.3390/rs12122038
Chicago/Turabian StyleTorres, Ricardo, Yuri Artioli, Vassilis Kitidis, Stefano Ciavatta, Manuel Ruiz-Villarreal, Jamie Shutler, Luca Polimene, Victor Martinez, Claire Widdicombe, E. Malcolm S. Woodward, and et al. 2020. "Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation" Remote Sensing 12, no. 12: 2038. https://doi.org/10.3390/rs12122038
APA StyleTorres, R., Artioli, Y., Kitidis, V., Ciavatta, S., Ruiz-Villarreal, M., Shutler, J., Polimene, L., Martinez, V., Widdicombe, C., Woodward, E. M. S., Smyth, T., Fishwick, J., & Tilstone, G. H. (2020). Sensitivity of Modeled CO2 Air–Sea Flux in a Coastal Environment to Surface Temperature Gradients, Surfactants, and Satellite Data Assimilation. Remote Sensing, 12(12), 2038. https://doi.org/10.3390/rs12122038