Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery
"> Figure 1
<p>Clouds and cloud shadows and their effects on NDVI. Left: over vegetated land surface, middle: over water surface, right: over bare land surface. These sites are randomly selected. (<b>A</b>) True color Landsat-7/ETM+ image. (<b>B)</b> Landsat-7/ETM+ NDVI image.</p> "> Figure 2
<p>Five select testing sites (black rectangles) and two evaluation sites (pink rectangles) in the conterminous USA (overlaid on the NLCD 2006 land cover map).</p> "> Figure 3
<p>Distributions of maximum, minimum NDVI values within each of the water, vegetation, and bare land categories in the five testing sites. Site #1 and #2 are dominated by vegetation (crops or forests), Site #3 is dominated by water, and Site #4 and #5 are dominated by bare land.</p> "> Figure 4
<p>The procedure to generate NDVI composites from multi-year Landsat-7/ETM+ imagery with the proposed Mixed NDVI method on Google Earth Engine.</p> "> Figure 5
<p>Nominal 2006 NDVI composites created with the Maximum NDVI criteria and the Mixed NDVI criteria over a water site (<b>upper row</b>) and a bare land site (<b>bottom row</b>).</p> "> Figure 6
<p>Landsat-7/ ETM+ NDVI composite of the conterminous US in 2006.</p> "> Figure 7
<p>Distributions of dates when good quality data were collected that went into the 2000 and 2006 Chicago NDVI composites. (<b>A</b>) Date distribution without year differentiation; (<b>B</b>) cumulative curves of A; (<b>C</b>) date distribution with year differentiation in the 2000 composite; and (<b>D</b>) date distribution with year differentiation in the 2006 composite.</p> "> Figure 8
<p>Acquisition years and NDVI values in the 2006 composite in a subregion in the Chicago area. (<b>A</b>) Acquisition years: black: 2006, grey: 2007, and white: 2008; (<b>B</b>) NDVI values increase from black to white; (<b>C</b>) Distribution of NDVI; (<b>D</b>–<b>F</b>) Google Earth snapshots.</p> "> Figure 9
<p>The 2006 NDVI (<b>A</b>), NTL (<b>B</b>), NDUI (<b>C</b>), and NLCD (<b>D</b>) maps in the Salt Lake City area, Utah.</p> "> Figure 10
<p>A close-up look at the urban areas of the Salt Lake City region. (<b>A</b>) Downtown of Salt Lake City; (<b>B</b>) commercial strip; (<b>C</b>) industrial zone; (<b>D</b>) Salt Lake City International Airport; (<b>E</b>) industrial Zone; (<b>F</b>) sand pit at the Point of the Mountain; (<b>G</b>) Bingham Canyon Open-Pit Copper Mine.</p> "> Figure 11
<p>The distribution of NDVI values in the 2006 NDVI composite (<b>A</b>) and the distribution of the 2006 NDUI within each NLCD 2006 Developed class and the Cultivated Crops class, excluding water, in the Chicago region (<b>B</b>).</p> "> Figure 12
<p>The latitudinal profiles of NDUI and NLCD ISA in Salt Lake City (<b>A</b>), and the linear regression model between them (<b>B</b>). Panel (<b>C</b>) shows a Google Earth snapshot, which reveals that the piece of land within the dotted rectangle was bare in 2006. The upper graph of panel A is a false color composite (Red: NDUI, Green: NDUI, Blue: NLCD ISA).</p> "> Figure 13
<p>Distributions of NDUI (<b>A</b>), BCI (<b>B</b>), NDVI (<b>C</b>), and NDBI (<b>D</b>) within both the NLCD 2006 barren land class and the Developed classes in the two evaluation sites.</p> "> Figure 14
<p>Some not-well-lit Developed areas cannot be well captured in the 2006 NDUI in the Salt Lake City region.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Data and Preprocessing
2.2. ETM+ NDVI Composing
2.2.1. Impact of Clouds and Cloud Shadows on NDVI over Different Land Surfaces
Land Cover Type | NDVI | Cloud Effect | Shadow Effect | Clear-Sky NDVI |
---|---|---|---|---|
Vegetation | High | ↘ | ↘ | Maximum |
Bare land | Low | ↗ | ↘ | Median |
Water | Very low | ↗ | ↗ | Minimum |
2.2.2. Vegetation, Bare Land, and Water Stratification
2.2.3. Building a Nominal Annual NDVI Composite from Multi-Year ETM+ Imagery
2.3. The Normalized Difference Urban Index (NDUI)
2.4. Evaluating NDUI with NLCD 2006
3. Results
3.1. Landsat-7/ETM+ NDVI Composites
3.2. Date Distribution in the NDVI Composites
3.3. Characterizing Urban Areas by NDUI
3.4. Separating Urban Area from Agricultural Land
3.5. Quantitative Assessment of NDUI
3.6. Comparison with Other Indices in Terms of Separating Urban Areas from Bare Lands
Index | Open Space | Low | Medium | High |
---|---|---|---|---|
NDUI | 1.27 | 1.54 | 1.81 | 2.17 |
CI | 0.78 | 0.94 | 1.09 | 1.30 |
NDBI | 0.48 | 0.56 | 0.49 | 0.12 |
NDVI | 1.41 | 1.44 | 1.02 | 0.36 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mills, G. Cities as agents of global change. Int. J. Climatol. 2007, 27, 1849–1857. [Google Scholar] [CrossRef]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Increasing world-wide urban albedos to offset CO2. Clim. Chang. 2009, 94, 275–286. [Google Scholar] [CrossRef]
- World Urbanization Prospects: The 2011 Revision. Available online: http://esa.un.org/unpd/wpp/ (accessed on 30 June 2015).
- Gutman, P. Ecosystem services: Foundations for a new rural–urban compact. Ecol. Econ. 2007, 62, 383–387. [Google Scholar] [CrossRef]
- Nakićenović, N. Summary for Policy Makers. In Global Energy Assessment: Toward a Sustainable Future; Cambridge University Press: Hong Kong, China, 2012; pp. 16–18. [Google Scholar]
- Hoornweg, D.; Bhada, P.; Freire, M.; Trejos, C.; Sugar, L. Cities and Climate Change: An Urgent Agenda; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Seitzinger, S.P.; Svedin, U.; Crumley, C.; Steffen, W.; Adbullah, S.A.; Alfsen, C.; Broadgate, W.J.; Biermann, F.; Bondre, N.R.; Dearing, J.A. Planetary stewardship in an urbanizing world. Ambio 2012, 41, 787–794. [Google Scholar] [CrossRef] [PubMed]
- World Population Prospects: The 2010 Revision. Available online: http://www.un.org/en/development/desa/publications/world-population-prospects-the-2010-revision.html (accessed on 30 June 2015).
- Scott, A.J. World development report 2009: Reshaping economic geography. J Econ. Geogr. 2009, 9, 583–586. [Google Scholar] [CrossRef]
- Gurney, K.R.; Razlivanov, I.; Song, Y.; Zhou, Y.; Benes, B.; Abdul-Massih, M. Quantification of fossil fuel CO2 emissions on the building/street scale for a large US city. Environ. Sci. Technol. 2012, 46, 12194–12202. [Google Scholar] [CrossRef] [PubMed]
- Potere, D.; Schneider, A. A critical look at representations of urban areas in global maps. GeoJournal 2007, 69, 55–80. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to landsat imagery. Science 2008, 320. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Forster, B. An examination of some problems and solutions in monitoring urban areas from satellite platforms. Int. J. Remote Sens. 1985, 6, 139–151. [Google Scholar] [CrossRef]
- Hepner, G.F.; Houshmand, B.; Kulikov, I.; Bryant, N. Investigation of the integration of AVIRIS and IFSAR for urban analysis. Photogramm. Eng. Remote Sens. 1998, 64, 813–820. [Google Scholar]
- Evaluation of Thematic Mapper Data for Determining Urban Land Cover. Available online: http://www.alwelaie.com/website/universitytheses_details_print.php?theses_id=18148 (accessed on 30 June 2015).
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Z.; Chen, M.; Luo, H. Mndisi: A multi-source composition index for impervious surface area estimation at the individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens.Enviro. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite dmsp/ols “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D.; Balk, D.; Montgomery, M. Spatial scaling of stable night lights. Remote Sens. Environ. 2011, 115, 269–280. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from dmsp/ols nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J. The nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted ntl urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, C. The integrated use of DMSP-OLS nighttime light and modis data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze River delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef]
- Hansen, M.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Storey, J.C.; Choate, M.J.; Hayes, R.W. Four years of landsat-7 on-orbit geometric calibration and performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2786–2795. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- National Geophysical Data Center at the National Oceanic and Atmospheric Administration. Available online: http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html (accessed on 24 January 2013).
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Homer, C.; Huang, C.; Yang, L.; Wylie, B.; Coan, M. Development of a 2001 national landcover database for the United States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 national land cover database land cover classification to 2006 by using landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Sohl, T.L.; Campbell, P.V.; Shaw, D.M. Regional land cover characterization using landsat thematic mapper data and ancillary data sources. Environ. Monit. Assess. 1998, 51, 415–428. [Google Scholar] [CrossRef]
- Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Huang, C.; Thomas, N.; Goward, S.N.; Masek, J.G.; Zhu, Z.; Townshend, J.R.G.; Vogelmann, J.E. Automated masking of cloud and cloud shadow for forest change analysis using Landsat images. Int. J. Remote Sens. 2010, 31, 5449–5464. [Google Scholar] [CrossRef]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A landsat surface reflectance dataset for north America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Wilson, M.J.; Várnai, T. Implementation on Landsat data of a simple cloud-mask algorithm developed for MODIS land bands. IEEE Geosci. Remote Sens. Lett. 2011, 8, 597–601. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Scaramuzza, P.L.; Bouchard, M.A.; Dwyer, J.L. Development of the landsat data continuity mission cloud-cover assessment algorithms. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1140–1154. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Derrien, M.; le Gléau, H. Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing techniques with real-time SEVIRI. Int. J. Remote Sens. 2010, 31, 1765–1780. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Collett, L.J.; Denham, R.J.; Flood, N.; Tindall, D. Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series. Remote Sens. Environ. 2013, 134, 50–65. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Homer, C.; Yang, L.; Xian, G.; Fry, J.; Danielson, P.; Townsend, P.A. Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA. Int. J. Remote Sens. 2013, 34, 1540–1560. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 2013, 133, 21–37. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Frey, R. An automatic cloud mask algorithm based on time series of MODIS measurements. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Tseng, D.C.; Tseng, H.T.; Chien, C.L. Automatic cloud removal from multi-temporal spot images. App. Math. Comp. 2008, 205, 584–600. [Google Scholar] [CrossRef]
- Wang, B.; Ono, A.; Muramatsu, K.; Fujiwarattt, N. Automated detection and removal of clouds and their shadows from Landsat TM images. IEICE Trans. Inf. Syst. 1999, 82, 453–460. [Google Scholar]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Pereira, J.M.C. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Trans. Geosci. Remote Sens. 1999, 37, 217–226. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the Syrian crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Huang, C.; Li, D. Detecting 2014 northern Iraq insurgency using night-time light imagery. Int. J. Remote Sens. 2015, 36, 3446–3458. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens. 2013, 5, 3476–3494. [Google Scholar] [CrossRef]
- Miller, S.D.; Lee, T.F.; Turk, F.J.; Kuciauskas, A.P.; Hawkins, J.D. Shedding New Light on Nocturnal Monitoring of The Environment with the VIIRS Day/Night Band. In Proceedings of the Atmospheric and Environmental Remote Sensing Data Processing and Utilization: Numerical Atmospheric Prediction and Environmental Monitoring, San Diego, California, USA, 31 July 2005.
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, B.; Thau, D.; Moore, R. Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery. Remote Sens. 2015, 7, 11887-11913. https://doi.org/10.3390/rs70911887
Zhang Q, Li B, Thau D, Moore R. Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery. Remote Sensing. 2015; 7(9):11887-11913. https://doi.org/10.3390/rs70911887
Chicago/Turabian StyleZhang, Qingling, Bin Li, David Thau, and Rebecca Moore. 2015. "Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery" Remote Sensing 7, no. 9: 11887-11913. https://doi.org/10.3390/rs70911887
APA StyleZhang, Q., Li, B., Thau, D., & Moore, R. (2015). Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery. Remote Sensing, 7(9), 11887-11913. https://doi.org/10.3390/rs70911887