Locomotion of a Cylindrical Rolling Robot with a Shape Changing Outer Surface
<p>The OSU Roller has a mass of 0.950 kg with a perimeter of 2.095 m.</p> "> Figure 2
<p>The robot model includes affects of bending and has three forces acting on the robot: weight, normal force and traction. The model also includes torque caused by rolling resistance.</p> "> Figure 3
<p>The moment, <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>x</mi> <mi>d</mi> </msub> </mrow> </semantics></math>, causes a torque imbalance about the robot center of mass, affecting roll dynamics of the robot.</p> "> Figure 4
<p>An example of stable locomotion of the robot for <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>2.2</mn> </mrow> </semantics></math> rad/s. Angular velocity rises quickly to the desired level and remains close to it thereafter.</p> "> Figure 5
<p>An example of unstable locomotion for the robot for <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>2.2</mn> </mrow> </semantics></math> rad/s. Average angular velocity dips far below the desired level during the latter half of the trial roll.</p> "> Figure 6
<p>Roll track for the robot is a flat and level section of laminate flooring installed on concrete.</p> "> Figure 7
<p>Cells with a dot signify values of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>t</mi> </msub> </semantics></math> that are superior in terms of energy economy of robot locomotion. Gray cells signify values of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>t</mi> </msub> </semantics></math> that cause instability, and cells with a cross-out signify inferior values of <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>t</mi> </msub> </semantics></math>.</p> "> Figure 8
<p>Robot angular velocity from simulation and from trial roll are plotted versus roll time for Roll 1, in which <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>2.0</mn> </mrow> </semantics></math> rad/s.</p> "> Figure 9
<p>Robot angular velocity from simulation and from trial roll are plotted versus roll time for Roll 2, in which <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>2.2</mn> </mrow> </semantics></math> rad/s.</p> "> Figure 10
<p>Robot angular velocity from simulation and from trial roll are plotted versus roll time for Roll 3, in which <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>2.4</mn> </mrow> </semantics></math> rad/s.</p> "> Figure 11
<p>When the robot exhibits the early actuation pattern, inadvertent braking occurs before the robot has reached the <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics></math> orientation.</p> "> Figure 12
<p>For Roll A, the robot exhibits the early actuation pattern, in which inadvertent braking (when <math display="inline"><semantics> <msub> <mi>x</mi> <mi>d</mi> </msub> </semantics></math> is positive) causes the roll to have relatively low energy economy.</p> "> Figure 13
<p>Angular velocity of the robot for Roll A, a roll with relatively low energy economy. At times, the robot slows itself down when it is already going too slow relative to the desired velocity of −2.0 rad/s.</p> "> Figure 14
<p>When <span class="html-italic">A</span> is oriented nearly vertically, gravity makes contraction “easy” for the linear actuator. When oriented horizontally, weight and outwardly directed end effects on the linear actuator make contraction “difficult”.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Composition of the Robot
2.2. Mathematical Model of Robot Motion
2.3. Robot Velocity Control System
2.4. Simulation Program
2.5. Experimental Procedure
2.5.1. Control Program
2.5.2. Trial Rolls
- rad/s with
- rad/s with
- rad/s with
2.5.3. Energy Per Unit Roll Distance,
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McKerrow, P.J. Introduction to Robotics; Chapter Components and Subsystems; Addison Wesley Publishing Company: Sydney, Australia, 1991; p. 57. [Google Scholar]
- Bogue, R. Shape Changing Self-Reconfiguring Robots. Ind. Robot Int. J. 2015, 42, 290–295. [Google Scholar] [CrossRef]
- Watanabe, W.; Sato, T.; Ishiguro, A. A Fully Decentralized Control of a Serpentine Robot Based on the Discrepancy between Body, Brain and Environment. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2421–2426. [Google Scholar]
- Armour, R.; Vincent, F. Rolling in Nature and Robotics: A Review. J. Bionic Eng. 2006, 3, 195–208. [Google Scholar] [CrossRef]
- Sastra, J.; Chitta, S.; Yim, M. Dynamic Rolling for a Modular Loop Robot. Int. J. Robot. Res. 2009, 28, 758–773. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, Y.; Hirai, S. Crawling and Jumping by a Deformable Robot. Int. J. Robot. Res. 2006, 25, 603–620. [Google Scholar] [CrossRef]
- Matsuda, T.; Murata, S. Stiffness Control—Locomotion of Closed Link Robot with Mechanical Stiffness. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1491–1498. [Google Scholar]
- Tedrake, R. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying and Manipulation (Course Notes for MIT 6.832). 2016. Available online: http://underactuated.mit.edu (accessed on 8 March 2017).
- Mochon, S.; McMahon, T.A. Ballistic Walking. J. Biomech. 1980, 13, 49–57. [Google Scholar] [CrossRef]
- McGeer, T. Passive Dynamic Walking. Int. J. Rob. Res. 1990, 9, 62–82. [Google Scholar] [CrossRef]
- Tavakoli, A. Gravity powered locomotion and active control of three mass system. In Proceedings of the ASME 2010 Dynamic Systems and Control Conference, Cambridge, MA, USA, 12–15 September 2010; pp. 141–148. [Google Scholar]
- Chiu, H.C.; Rubenstein, M.; Shen, W.M. Multifunctional SuperBot with Rolling Track Configuration. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007. [Google Scholar]
- Mellinger, D.; Kumar, V.; Yim, M. Control of Locomotion with with Shape-Changing Wheels. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1750–1755. [Google Scholar]
- Melo, K.; Velasco, A.; Parra, C. Motion Analysis of an Ellipsoidal Kinematic Closed Chain. In Proceedings of the 2011 IEEE IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, Bogota, Colombia, 1–4 October 2011. [Google Scholar]
- Puopolo, M.G.; Jacob, J.D. Velocity control of a cylindrical rolling robot by shape changing. Adv. Robot. 2016, 30, 1484–1494. [Google Scholar] [CrossRef]
- Chitode, J.; Bakshi, U. Power Devices and Machines; Technical Publications Pune: Maharashtra, India, 2009; pp. 7.20–7.23. [Google Scholar]
- Serway, R.A. Physics for Scientist and Engineers, 3rd ed.; Saunders College Publishing: Philadelphia, PA, USA, 1990; Chapters 7, 27; pp. 152–173, 740–760. [Google Scholar]
- Chandrupatla, T.R.; Osler, T.J. The Perimeter of an Ellipse. Math. Sci. 2010, 35, 122–131. [Google Scholar]
- Hibbeler, R. Dynamics, 12th ed.; Chapter Kinetics of a Particle: Impulse and Momentum; Prentice Hall: Upper Saddle River, NJ, USA, 2010; pp. 262–297. [Google Scholar]
- Pal, S. Numerical Methods; Oxford University Press: Oxford, UK, 2013; Chapters 14, 15; pp. 439–440, 522–538. [Google Scholar]
- Savitch, W. Absolute C++; Chapter C++ Basics; Pearson: Boston, MA, USA, 2013; p. 4. [Google Scholar]
- Chou, Y. Statistical Analysis; Chapter Queing Theory and Monte Carlo Simulation; Holt, Rinehart & Winston of Canada: Toronto, ON, Canada, 1969; pp. 720–730. [Google Scholar]
- Pett, M.A. Nonparametric Statistics for Health Care Research; Chapter Addressing Differences Among Groups; Sage Publications: Thousand Oaks, CA, USA, 1997; pp. 204–211. [Google Scholar]
- Puopolo, M.G. Locomotion of a Cylindrical Rolling Robot with a Shape Changing Outer Surface. Ph.D. Thesis, Oklahoma State University, St. Walter, OK, USA, 2017. [Google Scholar]
- Antol, J.; Calhoun, P. Low Cost Mars Surface Exploration: The Mars Tumbleweed; Technical Report NASA/TM-2003-212411; National Aeronautics and Space Administration: Washington, DC, USA, 2003. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puopolo, M.G.; Jacob, J.D.; Gabino, E. Locomotion of a Cylindrical Rolling Robot with a Shape Changing Outer Surface. Robotics 2018, 7, 52. https://doi.org/10.3390/robotics7030052
Puopolo MG, Jacob JD, Gabino E. Locomotion of a Cylindrical Rolling Robot with a Shape Changing Outer Surface. Robotics. 2018; 7(3):52. https://doi.org/10.3390/robotics7030052
Chicago/Turabian StylePuopolo, Michael G., Jamey D. Jacob, and Emilio Gabino. 2018. "Locomotion of a Cylindrical Rolling Robot with a Shape Changing Outer Surface" Robotics 7, no. 3: 52. https://doi.org/10.3390/robotics7030052
APA StylePuopolo, M. G., Jacob, J. D., & Gabino, E. (2018). Locomotion of a Cylindrical Rolling Robot with a Shape Changing Outer Surface. Robotics, 7(3), 52. https://doi.org/10.3390/robotics7030052