Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines
<p>Macroscopic features of Portuguese <span class="html-italic">Asphodelus</span> species. Images of flowers and fruits of <span class="html-italic">A. macrocarpus</span> (<b>a</b>,<b>b</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>c</b>,<b>d</b>) growing in their natural habitats, Serra da Gardunha, Fundão. Root tubers in general and cross-section views in <span class="html-italic">A. macrocarpus</span> (<b>e</b>,<b>g</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>f</b>,<b>h</b>).</p> "> Figure 2
<p>Microscopic features of Portuguese <span class="html-italic">Asphodelus</span> species. LM (<b>a</b>,<b>b</b>,<b>e</b>,<b>f</b>,<b>g</b>,<b>h</b>) and SEM (<b>c</b>,<b>d</b>) images of velamen with multiple layers (E—epidermis, EX—exodermis cells with suberized walls, CP—cortical parenchyma cells) in <span class="html-italic">A. macrocarpus</span> (<b>a</b>,<b>c</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>b</b>,<b>d</b>) together with root hairs. Details of cortical parenchyma cells (CP), endodermis (EN), Casparian bands (CB) and vascular cylinder (PE—pericycle; PX—protoxylem; MX—metaxylem; PH—phloem; P—pith cells) in <span class="html-italic">A. macrocarpus</span> (<b>c</b>,<b>e</b>,<b>g</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>d</b>,<b>f</b>,<b>h</b>) in transversal view. LM (<b>i</b>,<b>j</b>) and SEM (<b>k</b>,<b>l</b>) images of scalariform vessels with lignified secondary cell wall deposition and fibers in longitudinal view in <span class="html-italic">A. macrocarpus</span> (<b>i</b>,<b>k</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>j</b>,<b>l</b>). LM (<b>m</b>–<b>p</b>) and SEM (<b>q</b>,<b>r</b>) images of cortex parenchyma showing thin-walled idioblasts with numerous calcium oxalate crystals, type raphides (arrows) in transversal view (<b>m</b>,<b>n</b>,<b>q</b>) and longitudinal view (<b>o</b>,<b>p</b>,<b>r</b>) in <span class="html-italic">A. macrocarpus</span> (<b>m</b>,<b>o</b>,<b>q</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>n</b>,<b>p</b>,<b>r</b>); Details of parenchyma cells with polysaccharides (<b>p</b>) such as starch grains (arrowhead).</p> "> Figure 2 Cont.
<p>Microscopic features of Portuguese <span class="html-italic">Asphodelus</span> species. LM (<b>a</b>,<b>b</b>,<b>e</b>,<b>f</b>,<b>g</b>,<b>h</b>) and SEM (<b>c</b>,<b>d</b>) images of velamen with multiple layers (E—epidermis, EX—exodermis cells with suberized walls, CP—cortical parenchyma cells) in <span class="html-italic">A. macrocarpus</span> (<b>a</b>,<b>c</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>b</b>,<b>d</b>) together with root hairs. Details of cortical parenchyma cells (CP), endodermis (EN), Casparian bands (CB) and vascular cylinder (PE—pericycle; PX—protoxylem; MX—metaxylem; PH—phloem; P—pith cells) in <span class="html-italic">A. macrocarpus</span> (<b>c</b>,<b>e</b>,<b>g</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>d</b>,<b>f</b>,<b>h</b>) in transversal view. LM (<b>i</b>,<b>j</b>) and SEM (<b>k</b>,<b>l</b>) images of scalariform vessels with lignified secondary cell wall deposition and fibers in longitudinal view in <span class="html-italic">A. macrocarpus</span> (<b>i</b>,<b>k</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>j</b>,<b>l</b>). LM (<b>m</b>–<b>p</b>) and SEM (<b>q</b>,<b>r</b>) images of cortex parenchyma showing thin-walled idioblasts with numerous calcium oxalate crystals, type raphides (arrows) in transversal view (<b>m</b>,<b>n</b>,<b>q</b>) and longitudinal view (<b>o</b>,<b>p</b>,<b>r</b>) in <span class="html-italic">A. macrocarpus</span> (<b>m</b>,<b>o</b>,<b>q</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>n</b>,<b>p</b>,<b>r</b>); Details of parenchyma cells with polysaccharides (<b>p</b>) such as starch grains (arrowhead).</p> "> Figure 2 Cont.
<p>Microscopic features of Portuguese <span class="html-italic">Asphodelus</span> species. LM (<b>a</b>,<b>b</b>,<b>e</b>,<b>f</b>,<b>g</b>,<b>h</b>) and SEM (<b>c</b>,<b>d</b>) images of velamen with multiple layers (E—epidermis, EX—exodermis cells with suberized walls, CP—cortical parenchyma cells) in <span class="html-italic">A. macrocarpus</span> (<b>a</b>,<b>c</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>b</b>,<b>d</b>) together with root hairs. Details of cortical parenchyma cells (CP), endodermis (EN), Casparian bands (CB) and vascular cylinder (PE—pericycle; PX—protoxylem; MX—metaxylem; PH—phloem; P—pith cells) in <span class="html-italic">A. macrocarpus</span> (<b>c</b>,<b>e</b>,<b>g</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>d</b>,<b>f</b>,<b>h</b>) in transversal view. LM (<b>i</b>,<b>j</b>) and SEM (<b>k</b>,<b>l</b>) images of scalariform vessels with lignified secondary cell wall deposition and fibers in longitudinal view in <span class="html-italic">A. macrocarpus</span> (<b>i</b>,<b>k</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>j</b>,<b>l</b>). LM (<b>m</b>–<b>p</b>) and SEM (<b>q</b>,<b>r</b>) images of cortex parenchyma showing thin-walled idioblasts with numerous calcium oxalate crystals, type raphides (arrows) in transversal view (<b>m</b>,<b>n</b>,<b>q</b>) and longitudinal view (<b>o</b>,<b>p</b>,<b>r</b>) in <span class="html-italic">A. macrocarpus</span> (<b>m</b>,<b>o</b>,<b>q</b>) and <span class="html-italic">A. bento-rainhae</span> (<b>n</b>,<b>p</b>,<b>r</b>); Details of parenchyma cells with polysaccharides (<b>p</b>) such as starch grains (arrowhead).</p> "> Figure 3
<p>TLC and HPLC-UV/DAD chromatographic profiles of secondary metabolites of <span class="html-italic">A. bento-rainhae</span> and <span class="html-italic">A. macrocarpus</span> root tuber extracts. Phenolic acid derivatives detection, SiG60, spraying with NP/PEG, solvent system: S1, UV:366<sub>nm</sub> (<b>a</b>); anthracene derivatives detection, SiG60 RP<sub>18</sub>, spraying with KOH 5%, solvent system: S2, UV:366<sub>nm</sub> (<b>b</b>); terpenoids detection, SiG60 spraying with anisaldehyde-sulphuric acid, solvent system: S3, visible light (<b>c</b>); comparative chromatograms of AbR and AmR extracts (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Botanical Characterization
2.2. Phytochemical Analysis
2.3. Preclinical Safety Assessment
3. Materials and Methods
3.1. Reagents
3.2. Plant Material
3.2.1. Sample Collection
3.2.2. Botanical Identification
3.3. Preparation of Extracts
3.4. Chromatographic Conditions
3.5. Quantification Assays of the Main Classes of Secondary Metabolites
3.6. Genotoxicity/Mutagenicity Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, J. Quality, Efficacy and Safety of Complementary Medicines: Fashions, Facts and the Future. Efficacy and Safety. In Perspectives on Complementary and Alternative Medicine; Routledge: Oxfordshire, UK, 2019; pp. 306–318. ISBN 9780429609367. [Google Scholar]
- Díaz Linfante, Z. Asphodelus L. In Flora Iberica; Talavera, S., Andrés, C., Arista, M., Piedra, M.P.F., Rico, E., Crespo, M.B., Quintanar, A., Herrero, A., Aedo, C., Eds.; Real Jardin Botänico, Consejo Superior de Investigaciones Científicas C.S.I.C.: Madrid, Spain, 2013; ISBN 276-308-152. [Google Scholar]
- Malmir, M.; Serrano, R.; Caniça, M.; Silva-Lima, B.; Silva, O. A Comprehensive Review on the Medicinal Plants from the Genus Asphodelus. Plants 2018, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peksel, A.; Imamoglu, S.; Kiymaz, N.A.; Orhan, N. Antioxidant and radical scavenging activities of Asphodelus aestivus Brot. extracts. Int. J. Food Prop. 2013, 16, 1339–1350. [Google Scholar] [CrossRef]
- Hammouda, F.M.; Rizk, A.M.; Ghaleb, H.; Abdel–Gawad, M.M. Chemical and Pharmacological Studies of Asphodelus Microcarpus. Planta Med. 1972, 22, 188–195. [Google Scholar] [CrossRef]
- Boulos, L. Medicinal Plants of North Africa; Reference Publications, Inc.: Algonac, MI, USA, 1983; ISBN 0917256166. [Google Scholar]
- Al-kayali, R.; Kitaz, A.; Haroun, M. Antibacterial Activity of Asphodelin lutea and Asphodelus microcarpus Against Methicillin Resistant Staphylococcus aureus Isolates. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1964–1968. [Google Scholar]
- Oskay, M.; Aktaş, K.; Sari, D.; Azeri, C. A Comparative Study of Antimicrobial Activity Using Well and Disk Diffusion Method on Asphodelus aestivus (Liliaceae). Ekoloji 2007, 16, 62–65. [Google Scholar]
- Abuhamdah, S.; Abuhamdah, R.; Al-Olimat, S.; Chazot, P. Phytochemical Investigations and Antibacterial Activity of Selected Medicinal Plants from Jordan. Eur. J. Med. Plants 2013, 3, 394–404. [Google Scholar] [CrossRef]
- El-Seedi, H.R. Antimicrobial Arylcoumarins from Asphodelus microcarpus. J. Nat. Prod. 2007, 70, 118–120. [Google Scholar] [CrossRef]
- Menghani, E. Isolation and Characterization of Bioactives from Arid Zone Plants. Int. J. Pharm. Res. Dev. 2012, 4, 113–118. [Google Scholar]
- Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.-E.I.; Jacob, M.; Radwan, M.M.; Doerksen, R.J.; Cutler, S.J.; Ross, S.A. Asphodosides A-E, anti-MRSA metabolites from Asphodelus microcarpus. Phytochemistry 2014, 105, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.; Howladar, S.M.; Mohamed, H.A.A.-G.; Al-Robai, S.A. Phytochemistry, Antimicrobial, Antigiardial and Antiamoebic Activities of Selected Plants from Albaha Area, Saudi Arabia. Br. J. Med. Med Res. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; Elokely, K.; El-Hela, A.A.; Mohammad, A.E.I.; Jacob, M.; Cutler, S.J.; Doerksen, R.J.; Ross, S.A. Isolation and characterization of new secondary metabolites from Asphodelus microcarpus. Med. Chem. Res. 2014, 23, 3510–3515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoneim, M.M.; Ma, G.; El-Hela, A.A.; Mohammad, A.-E.I.; Kottob, S.; El-Ghaly, S.; Cutler, S.J.; Ross, S.A. Biologically Active Secondary Metabolites from Asphodelus Microcarpus. Nat. Prod. Commun. 2013, 8, 1934578X1300800. [Google Scholar] [CrossRef]
- Aslantürk, Ö.S.; Çelik, T.A. Investigation of antioxidant, cytotoxic and apoptotic activities of the extracts from tubers of Asphodelus aestivus Brot. Afr. J. Pharm. Pharmacol. 2013, 7, 610–621. [Google Scholar] [CrossRef]
- Al Groshi, A.; Nahar, L.; Andrew, E.; Auzi, A.; Sarker, S.D.; Ismail, F.M.D. Cytotoxicity of Asphodelus aestivus against Two Human Cancer Cell Lines. Nat. Prod. Chem. Res. 2017, 5, 61. [Google Scholar]
- Aboul-Enein, A.M.; El-Ela, F.A.; Shalaby, E.A.; El-Shemy, H.A. Traditional Medicinal Plants Research in Egypt: Studies of Antioxidant and Anticancer Activities. J. Med. Plants Res. 2012, 6, 689–703. [Google Scholar]
- Di Petrillo, A.; González-Paramás, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef] [Green Version]
- Kalim, M.D.; Bhattacharyya, D.; Banerjee, A.; Chattopadhyay, S. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complement. Altern. Med. 2010, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Unal, I.; Ince, O.K. Characterization of antioxidant activity, vitamins, and elemental composition of ciris (Asphodelus aestivus L.) from Tunceli, Turkey. Instrum. Sci. Technol. 2016, 45, 469–478. [Google Scholar] [CrossRef]
- Adawia, K. Comparison of the Total Phenol, Flavonoid Contents and Antioxidant Activity of Methanolic Roots Extracts of Asphodelus microcarpus and Asphodeline lutea Growing in Syria. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Gürbüz, I.; Üstün, O.; Yeşilada, E.; Sezik, E.; Akyürek, N. In vivo gastroprotective effects of five Turkish folk remedies against ethanol-induced lesions. J. Ethnopharmacol. 2002, 83, 241–244. [Google Scholar] [CrossRef]
- Rimbau, V.; Risco, E.; Canigueral, S.; Iglesias, J. Antiinflammatory Activity of Some Extracts from Plants used in the Traditional Medicine of North-African Countries. Phytother. Res. 1996, 10, 421–423. [Google Scholar] [CrossRef]
- Safder, M.; Imran, M.; Mehmood, R.; Malik, A.; Afza, N.; Iqbal, L.; Latif, M. Asphorodin, a potent lipoxygenase inhibitory triterpene diglycoside from Asphodelus tenuifolius. J. Asian Nat. Prod. Res. 2009, 11, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Moady, M.; Moady, N. Anti-Psoriatic Composition, Method of Making and Method of Using. US Patent US5955081A, 1999. [Google Scholar]
- Aslam, N.; Janbaz, K.H.; Jabeen, Q. Hypotensive and diuretic activities of aqueous-ethanol extract of Asphodelus tenuifolius. Bangladesh J. Pharmacol. 2016, 11, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, B.-E.; Yenesew, A.; Dagne, E. Chemotaxonomic significance of anthraquinones in the roots of asphodeloideae (asphodelaceae). Biochem. Syst. Ecol. 1995, 23, 277–281. [Google Scholar] [CrossRef]
- Abdel-Gawad, M.; Hasan, A.; Raynaud, J. Estude de l’insaponifiable et des Acides Gras des Tuberculus d’ Asphodelus albus. Fitoterapia 1976, 47, 111–112. [Google Scholar]
- Abdel-Gawad, M.M.; Raynaud, J.; Netien, G. Les Anthraquinones Libres d’Asphodelus albus Var. Delphinensze et d’Asphodelus cerasifer (Free Anthraquinones of Asphodelus albus Var. Delphinensis and A. cerasifer). Planta Med. 1976, 30, 232–236. [Google Scholar] [CrossRef]
- Hammouda, F.; Rizk, A.; El-Nasr, M.S.; Asr, E.-N. Anthraquinones of Certain Egyptian Asphodelus Species. Z. Naturforsch. C 1974, 29, 351–354. [Google Scholar] [CrossRef] [Green Version]
- González, A.G.; Freire, R.; Hernández, R.; Salazar, J.A.; Suárez, E. Asphodelin and Microcarpin, Two New Bianthraquinones from Aphodelus microcarpus. Chem. Ind. 1973, 851–852. [Google Scholar]
- Rizk, A.; Hammouda, F.; Abdel-Gawad, M. Anthraquinones of Asphodelus microcarpus. Phytochemistry 1972, 11, 2122–2125. [Google Scholar] [CrossRef]
- Ghaleb, H.; Rizk, A.M.; Hammouda, F.M.; Abdel-Gawad, M.M. The active constituents of Asphodelus microcarpus Salzm et Vivi. Qual. Plant. Mater. Veg. 1972, 21, 237–251. [Google Scholar] [CrossRef]
- WCSP (World Checklist of Selected Plant Families). Facilitated by the Royal Botanic Gardens, Kew. Available online: Http://Wcsp.Science.Kew.Org/ (accessed on 31 May 2022).
- Menezes de Sequeira, M.; Espírito-Santo, D.; Aguiar, C.; Capelo, J.; Honrado, J. Checklist Da Flora de Portugal (Continental, Açores e Madeira); ALFA: Lisbon, Portugal, 2011. [Google Scholar]
- Clamote, F.; Gomes, C.T. Asphodelus bento-rainhae P. Silva Subsp. bento-rainhae—Distribution Map. Flora-On: Interactive Flora of Portugal, Portuguese Botanical Society. Available online: Http://Www.Flora-on.Pt/#wAsphodelus+bento-Rainhae+subsp.+bento-Rainhae (accessed on 31 May 2022).
- Caldas, F.B.; Moreno Saiz, J.C. The International Union for the Conservation of Nature (IUCN) Red List of Threatened Species; The International Union for the Conservation of Nature: Gland, Switzerland, 2011. [Google Scholar]
- Sampaio, G. Asphodelus. In Manual da Flora Portuguesa, 1st ed.; Imprensa Moderna: Porto, Portugal, 1909; pp. 85–87. [Google Scholar]
- Coutinho, A.X.P. Asphodelus L. In A Flora de Portugal (Plantas vasculares); Aillaud, A., Cia, L.B., Eds.; Livraria Bertrand: Lisboa, Portugal, 1913; pp. 126–127. [Google Scholar]
- Sampaio, G. Asphodelus Lin. In Flora Portuguesa, 2nd ed.; Imprensa Moderna: Porto, Portugal, 1946; pp. 109–110. [Google Scholar]
- Pinto da Silva, A.R. Asphodelus bento-rainhae P. Silva, Sp. Nov. Agron. Lusit. 1956, 18, 20–21. [Google Scholar]
- Parlatore, F. Asphodelus macrocarpus. In Flora Italiana; Le Monnier: Florence, Italy, 1857; Volume 2, p. 604. [Google Scholar]
- Lifante, Z.D. Inter- and intraspecific variation in pollen size in Asphodelus section Asphodelus (Asphodelaceae). Grana 1996, 35, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Lifante, Z.M.D. Pollen morphology of Asphodelus L. (Asphodelaceae): Taxonomic and phylogenetic inferences at the infrageneric level. Grana 1996, 35, 24–32. [Google Scholar] [CrossRef]
- Kosenko, V. Pollen morphology in the family Asphodelaceae (Asphodeleae, Kniphofieae). Grana 1999, 38, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Weryszko-Chmielewska, E.; Sawidis, T.; Piotrowska, K. Anatomy and ultrastructure of floral nectaries of Asphodelus aestivus Brot. (Asphodelaceae). Acta Agrobot. 2012, 59, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Weryszko-Chmielewska, E.; Chwil, M.; Sawidis, T. Micromorphology and histochemical traits of staminal osmophores in Asphodelus aestivus Brot. flower. Acta Agrobot. 2007, 60, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Sawidis, T.; Weryszko-Chmielewska, E.; Anastasiou, V.; Bosabalidis, A.M. The secretory glands of Asphodelus aestivus flower. Biologia 2008, 63, 1118–1123. [Google Scholar] [CrossRef]
- Sawidis, T. The Secretory Glands of Asphodelus aestivus Flower. In Botany; Mworia, J., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-51-0355-4. [Google Scholar]
- Vardar, F.; Ismailoğlu, I.; Ünal, M. Anther development and cytochemistry in Asphodelus aestivus (Asphodelaceae). Turk. J. Bot. 2013, 37, 306–315. [Google Scholar] [CrossRef]
- Chimona, C.; Koukos, D.; Meletiou-Christou, M.-S.; Spanakis, E.; Argiropoulos, A.; Rhizopoulou, S. Functional traits of floral and leaf surfaces of the early spring flowering Asphodelus ramosus in the Mediterranean region. Flora 2018, 248, 10–21. [Google Scholar] [CrossRef]
- Weryszko-Chmielewska, E.; Chwil, M. Nutritive for insects attractants in Asphodelus albus Miller flowers. Acta Agrobot. 2006, 59, 155–164. [Google Scholar] [CrossRef]
- Ahmad, K.; Ajab Khan, M.; Ahmad, M.; Zafar, M. Morpho-Palyonological and Leaf Epidermal Anatomy of Weeds of District Tank, N.W.F.P., Pakistan. Pak. J. Weed Sci. Res. 2009, 15, 309–320. [Google Scholar]
- Sawidis, T.; Kalyva, S.; Delivopoulos, S. The root-tuber anatomy of Asphodelus aestivus. Flora-Morphol. Distrib. Funct. Ecol. Plants 2005, 200, 332–338. [Google Scholar] [CrossRef]
- Sherma, J. Thin-Layer Chromatography. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2006. [Google Scholar]
- Witkiewicz, Z.; Bladek, J. Overpressured thin-layer chromatography. J. Chromatogr. A 1986, 373, 111–140. [Google Scholar] [CrossRef]
- Mayouf, N.; Charef, N.; Saoudi, S.; Baghiani, A.; Khennouf, S.; Arrar, L. Antioxidant and anti-inflammatory effect of Asphodelus microcarpus methanolic extracts. J. Ethnopharmacol. 2019, 239, 111914. [Google Scholar] [CrossRef]
- Lazarova, I.; Zengin, G.; Sinan, K.I.; Aneva, I.; Uysal, S.; Picot-Allain, M.C.N.; Aktumsek, A.; Bouyahya, A.; Mahomoodally, M.F. Metabolomics profiling and biological properties of root extracts from two Asphodelus species: A. albus and A. aestivus. Food Res. Int. 2020, 134, 109277. [Google Scholar] [CrossRef]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Verschaeve, L. Genotoxicity and Antigenotoxicity Studies of Traditional Medicinal Plants: How Informative and Accurate Are the Results? Nat. Prod. Commun. 2015, 10, 1489–1493. [Google Scholar] [CrossRef]
- Sponchiado, G.; Adam, M.L.; Silva, C.D.; Soley, B.S.; de Mello-Sampayo, C.; Cabrini, D.A.; Correr, C.J.; Otuki, M.F. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review. J. Ethnopharmacol. 2016, 178, 289–296. [Google Scholar] [CrossRef]
- Dantas, F.G.D.S.; de Castilho, P.F.; de Almeida-Apolonio, A.A.; de Araújo, R.P.; de Oliveira, K.M.P. Mutagenic potential of medicinal plants evaluated by the Ames Salmonella/microsome assay: A systematic review. Mutat. Res.-Rev. Mutat. Res. 2020, 786, 108338. [Google Scholar] [CrossRef]
- Shin, K.Y.; Won, B.Y.; Ha, H.J.; Yun, Y.S.; Lee, H.G. Genotoxicity studies on the root extract of Polygala tenuifolia Willdenow. Regul. Toxicol. Pharmacol. 2015, 71, 365–370. [Google Scholar] [CrossRef]
- Kelber, O.; Wegener, T.; Steinhoff, B.; Staiger, C.; Wiesner, J.; Knöss, W.; Kraft, K. Assessment of genotoxicity of herbal medicinal products: Application of the “bracketing and matrixing” concept using the example of Valerianae radix (valerian root). Phytomedicine 2014, 21, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. Environ. Mutagenesis Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas—2nd Edition; Springer: Berlin, Germany, 1996. [Google Scholar]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Olivera, D.F.; Viña, S.Z.; Marani, C.M.; Ferreyra, R.M.; Mugridge, A.; Chaves, A.R.; Mascheroni, R.H. Effect of blanching on the quality of Brussels sprouts (Brassica oleracea L. gemmifera DC) after frozen storage. J. Food Eng. 2008, 84, 148–155. [Google Scholar] [CrossRef]
- Chang, C.L.; Lin, C.S. Phytochemical Composition, Antioxidant Activity, and Neuroprotective Effect of Terminalia chebula Retzius Extracts. Evid.-Based Complement. Altern. Med. 2011, 2012, 125247. [Google Scholar] [CrossRef] [Green Version]
- Wilfred Vermerris, R.N. Phenolic Compound Biochemistry; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-5163-0. [Google Scholar]
- Sakulpanich, A.; Gritsanapan, W. Extraction Method for High Content of Anthraquinones from Cassia Fistula Pods. J. Health Res. 2008, 22, 167–172. [Google Scholar]
- ICH Guideline S2(R1). Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. Step 4 Version of November; ICH: Geneva, Switzerland, 2011. [Google Scholar]
- Tavares, G.D.B.; Aiub, C.A.F.; Felzenszwalb, I.; Dantas, E.K.C.; Araújo-Lima, C.F.; Júnior, C.L.S. In vitro biochemical characterization and genotoxicity assessment of Sapindus saponaria seed extract. J. Ethnopharmacol. 2021, 276, 114170. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-operation and Development). Guideline for Testing of Chemicals: No.471-Bacterial Reverse Mutation Test; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
Anatomical Characteristic | AbR | AmR | ||||
---|---|---|---|---|---|---|
Min–Max | Mean | ±SD | Min–Max | Mean | ±SD | |
Root length (cm) | 2–5 | 3.5 | 0.7 | 6–13 | 8.7 | 2.2 |
Root diameter (cm) | 0.7–1.6 | 1 | 0.2 | 1.2–1.7 | 1.4 | 0.2 |
Velamen (numbers of cell layers) | 4–5 | 4 | 0.25 | 4–7 | 5 | 0.54 |
Cortex (numbers of cell layers) | 17–24 | 21 | 3.1 | 21–37 | 29 | 4.7 |
Idioblast cell width (μm) | 58.3–62.5 | 134 | 2.9 | 60.7–114.6 | 150 | 27.6 |
Protoxylem wall thickness (μm) | 4.2–5 | 4.5 | 0.4 | 4.1–6 | 4.6 | 0.3 |
Protoxylem diameter (μm) | 20.8–25 | 22.9 | 2.95 | 8.33–61 | 36.1 | 35.8 |
Metaxylem wall thickness (μm) | 8.3–13.9 | 10.4 | 1.7 | 10.8–14.6 | 12.4 | 1.6 |
Metaxylem diameter (μm) | 50–99.6 | 70.3 | 13.1 | 52–101.8 | 80.7 | 19.0 |
Pith cell diameter (μm) | 73.2–121.9 | 93 | 5.6 | 94.4–140.7 | 114 | 4.6 |
Raphids length (μm) | 20.8–62.5 | 37.2 | 14.2 | 78–114.3 | 87.7 | 15.3 |
Assays | AbRa | AbRb | AmRa | AmRb |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
TPC | ||||
(mg GAE/g dried extract) | 20.36 ± 4.2 | 26.45 ± 7.52 | 29.14 ± 9.32 | 27.35 ± 8.13 |
(mg GAE/g dried Root) | 10.94 ± 2.26 | 13.76 ± 3.91 | 12.76 ± 4.08 | 10.12 ± 3.01 |
TFC | ||||
(mg CAE/g dried extract) | 10.55 ± 1.17 | 16.71 ± 1.12 * | 18.90 ± 0.26 | 17.70 ± 0.24 |
(mg CAE/g dried Root) | 5.67 ± 0.63 | 8.69 ± 0.58 | 8.28 ± 0.11 | 6.55 ± 0.09 |
TTC | ||||
(mg OAE/g dried extract) | 173.88 ± 29.82 | 172.11 ± 19.20 | 180.55 ± 10.57 | 154.36 ± 20.53 |
(mg OAE/g dried Root) | 93.46 ± 16.03 | 89.50 ± 9.99 | 79.08 ± 4.63 | 57.11 ± 7.60 |
TAC | ||||
(mg RhE/g dried extract) | 2.43 ± 0.17 | 3.21 ± 0.21 * | 3.38 ± 0.26 * | 2.68 ± 0.19 |
(mg RhE/g dried Root) | 1.31 ± 0.12 | 1.67 ± 0.16 | 1.48 ± 0.14 | 0.99 ± 0.09 |
TCTC | ||||
(mg CAE/g dried extract) | 93.80 ± 9.39 | 128.64 ± 14.05 * | 88.08 ± 7.83 | 108.35 ± 20.37 |
(mg CAE/g dried Root) | 50.42 ± 20.76 | 66.89 ± 7.30 | 38.58 ± 3.43 | 40.09 ± 7.54 |
THTC | ||||
(mg GAE/g dried extract) | 21.91 ± 7.43 | 32.73 ± 8.61 | 25.81 ± 7.25 | 28.09 ± 6.16 |
(mg GAE/g dried Root) | 11.78 ± 4.91 | 17.02 ± 4.48 | 11.31 ± 3.17 | 10.39 ± 2.28 |
Extracts | Plate Incorporation Test without Metabolic Activation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TA98 | TA100 | TA102 | TA1535 | TA1537 | ||||||
Mean | ±SD | Mean | ±SD | Mean | ±SD | Mean | ±SD | Mean | ±SD | |
AbRb µg/plate | ||||||||||
250 | 16 | 3.1 | 174 | 7.8 | 365 | 21.4 | 19 | 4.6 | 10 | 1.2 |
625 | 21 | 2.5 | 158 | 3.1 | 334 | 14.6 | 20 | 3.1 | 11 | 2.3 |
1250 | 23 | 3.1 | 164 | 9.9 | 354 | 16.3 | 25 | 2.5 | 10 | 1.7 |
2500 | 23 | 1.5 | 177 | 22.1 | 363 | 8.9 | 20 | 0.6 | 10 | 2.1 |
3750 | 20 | 1 | 164 | 2.3 | 392 | 41.3 | 19 | 3.1 | 10 | 2.1 |
5000 | 23 | 3.6 | 183 | 17.4 | 365 | 19.8 | 17 | 1.7 | 10 | 3.2 |
AmRb µg/plate | ||||||||||
250 | 21 | 4.6 | 177 | 13.1 | 347 | 9 | 26 | 5.6 | 9 | 1.2 |
625 | 18 | 0.6 | 158 | 8.2 | 354 | 9.5 | 23 | 3.5 | 9 | 2.1 |
1250 | 22 | 6.1 | 179 | 17 | 379 | 29.5 | 17 | 1.2 | 11 | 2.1 |
2500 | 23 | 5.3 | 177 | 7.6 | 397 | 22.6 | 21 | 1.2 | 10 | 2 |
3750 | 21 | 5.2 | 179 | 12.5 | 394 | 10 | 19 | 0.6 | 11 | 2.1 |
5000 | 22 | 1 | 166 | 16.1 | 395 | 28.8 | 17 | 1.5 | 9 | 1 |
NR | 19 | 1.5 | 156 | 16.7 | 320 | 3.5 | 21 | 2.5 | 7 | 1 |
PR * | 487.7 | 30.2 | 1048 | 43.2 | 881 | 26.2 | 827.3 | 13.1 | 1354 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malmir, M.; Serrano, R.; Lima, K.; Duarte, M.P.; Moreira da Silva, I.; Silva Lima, B.; Caniça, M.; Silva, O. Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines. Plants 2022, 11, 3173. https://doi.org/10.3390/plants11223173
Malmir M, Serrano R, Lima K, Duarte MP, Moreira da Silva I, Silva Lima B, Caniça M, Silva O. Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines. Plants. 2022; 11(22):3173. https://doi.org/10.3390/plants11223173
Chicago/Turabian StyleMalmir, Maryam, Rita Serrano, Katelene Lima, Maria Paula Duarte, Isabel Moreira da Silva, Beatriz Silva Lima, Manuela Caniça, and Olga Silva. 2022. "Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines" Plants 11, no. 22: 3173. https://doi.org/10.3390/plants11223173
APA StyleMalmir, M., Serrano, R., Lima, K., Duarte, M. P., Moreira da Silva, I., Silva Lima, B., Caniça, M., & Silva, O. (2022). Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines. Plants, 11(22), 3173. https://doi.org/10.3390/plants11223173