Hybrid Sliding Mode Control of Full-Car Semi-Active Suspension Systems
<p>Schematic of the 7 DOF full-car suspension system.</p> "> Figure 2
<p>The test bench used for experimental validation and testing.</p> "> Figure 3
<p>The road profile.</p> "> Figure 4
<p>Model simulation versus experimental data: The vertical displacements of the front wheel-axle assemblies.</p> "> Figure 5
<p>Model simulation versus experimental data: The vertical displacements of the rear wheel–axle assemblies.</p> "> Figure 6
<p>Model simulation versus experimental data: The vertical displacements of the front quarter-car bodies.</p> "> Figure 7
<p>Model simulation versus experimental data: The vertical displacements of the rear quarter-car bodies.</p> "> Figure 8
<p>Model simulation versus experimental data: The vertical displacement of the full-car body centroid.</p> "> Figure 9
<p>Passive and controlled displacements of the full-car body centroid: Full-car body centroid displacement when <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Passive and controlled displacements of the full-car body centroid: Full-car body centroid displacement when <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Passive and controlled displacements of the full-car body centroid: Full-car body centroid displacement when <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>Passive and controlled displacements of the front wheel–axle assemblies: The vertical displacement of the front wheel–axle assemblies when <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>Passive and controlled displacements of the front wheel–axle assemblies: The vertical displacement of the front wheel–axle assemblies when <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>Passive and controlled displacements of the front wheel–axle assemblies: The vertical displacement of the front wheel–axle assemblies when <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. The Full-Car Suspension Model
3. The Sliding Mode Controller
3.1. The Reference Model
3.2. The Controller
4. Prototype and Simulation Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
Symbol | Description | Unit |
wheel–axle assembly at suspension i | kg | |
full-car body | kg | |
pitch angle | rad | |
roll angle | rad | |
pitch inertia | kg·m | |
roll inertia | kg·m | |
vertical displacement of the full-body centroid | m | |
vertical displacement of the wheel axle at suspension i | m | |
vertical displacement of the quarter body at suspension i | m | |
road disturbance at suspension i | m | |
damper’s passive damping at suspension i | N·s/m | |
stiffness of the suspension spring at suspension i | N/m | |
damper’s passive stiffness at suspension i | N/m | |
tire stiffness at suspension i | N/m | |
damping time constant at suspension i | ms | |
controlled damping force at suspension i | N | |
ideal sky-hook damping coefficient at suspension i | N·s/m | |
ideal ground-hook damping coefficient at suspension i | N·s/m | |
maximum sky-hook damping coefficient at suspension i | N·s/m | |
maximum ground-hook damping coefficient at suspension i | N·s/m | |
error vector | - | |
sliding surface | - | |
slope of the sliding surface | - | |
equivalent damping force for ride comfort | N | |
equivalent damping force for road holding | N | |
sliding mode damping force for ride comfort | N | |
sliding mode damping force for road holding | N | |
coefficient used to define the controller behavior | - |
References
- Yagiz, N.; Hacioglu, Y. Backstepping control of a vehicle with active suspensions. Control Eng. Pract. 2008, 16, 1457–1467. [Google Scholar] [CrossRef]
- Nekoui, M.A.; Hadavi, P. Optimal control of an active suspension system. In Proceedings of the 14th International Power Electronics and Motion Control Conference, Ohrid, Macedonia, 6–8 September 2010. [Google Scholar] [CrossRef]
- Ribbens, W.B. Chapter 7—Vehicle Motion Controls. In Understanding Automotive Electronics, 9th ed.; Butterworth-Heinemann: Waltham, MA, USA, 2017; pp. 343–408. ISBN 9780128104347. [Google Scholar] [CrossRef]
- Yerrawar, R.N.; Arakerimath, R.R. Performance assessment and control policies for semiactive suspension using SIMSCAPE. In Proceedings of the 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 9–10 September 2016. [Google Scholar] [CrossRef]
- Gandhi, P.; Adarsh, S.; Ramachandran, K.I. Performance Analysis of Half Car Suspension Model with 4 DOF using PID, LQR, FUZZY and ANFIS Controllers. Procedia Comput. Sci. 2017, 115, 2–13. [Google Scholar] [CrossRef]
- Chen, Y. Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement. Engineering 2009, 1, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Savaresi, S.; Silani, E.; Bittanti, S. Acceleration driven damper (ADD): An optimal control algorithm for comfort oriented semi-active suspensions. ASME Trans. J. Dyn. Syst. Meas. Control 2005, 127, 218–229. [Google Scholar] [CrossRef]
- Savaresi, S.; Spelta, C. Mixed sky-hook and ADD: Approaching the filtering limits of a semi-active suspension. ASME Trans. J. Dyn. Syst. Meas. Control 2007, 129, 382–392. [Google Scholar] [CrossRef]
- Choi, S.-B.; Lee, S.-K.; Park, Y.-P. A hysteresis model for the field-dependent damping force of a magnetorheological damper. J. Sound Vib. 2001, 245, 375–383. [Google Scholar] [CrossRef]
- Gaul, L.; Nitsche, R. Friction control for vibration suppression. Mech. Syst. Signal Process. 2000, 14, 139–150. [Google Scholar] [CrossRef]
- Kim, Y.; Langari, R.; Hurlebaus, S. Semiactive nonlinear control of a building with a magnetorheological damper system. Mech. Syst. Signal Process. 2009, 23, 300–315. [Google Scholar] [CrossRef]
- Guo, S.; Yang, S.; Pan, C. Dynamic modeling of magnetorheological damper behaviors. J. Intell. Mater. Syst. Struct. 2006, 17, 3–14. [Google Scholar] [CrossRef]
- Dyke, S.; Spencer, B., Jr.; Sain, M.; Carlson, J. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 1996, 5, 565. [Google Scholar] [CrossRef]
- Kamath, G.M.; Wereley, N.M. A nonlinear viscoelastic-plastic model for electrorheological fluids. Smart Mater. Struct. 1997, 6, 351. [Google Scholar] [CrossRef]
- Makris, N.; Burton, S.A.; Taylor, D.P. Electrorheological damper with annular ducts for seismic protection applications. Smart Mater. Struct. 1996, 5, 551. [Google Scholar] [CrossRef]
- Rao, K.D. Modeling, Simulation and Control of Semi Active Suspension System for Automobiles under MATLAB Simulink using PID Controller. IFAC Proc. Vol. 2014, 47, 827–831. [Google Scholar] [CrossRef]
- Zareh, S.H.; Khayyat, A.A.A. Fuzzy inverse model of magnetorheological dampers for semi-active vibration control of an eleven-degrees of freedom suspension system. J. Syst. Des. Dyn. 2011, 5, 1485–1497. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Kumamaru, T.; Yoshida, K. Integrated controller design for automotive semi-active suspension considering vehicle behavior with steering input. J. Syst. Des. Dyn. 2010, 4, 712–724. [Google Scholar] [CrossRef] [Green Version]
- Passenberg, B.; Caines, P.E.; Leibold, M.; Stursberg, O.; Buss, M. Optimal control for hybrid systems with partitioned state space. IEEE Trans. Autom. Control 2013, 58, 2131–2136. [Google Scholar] [CrossRef]
- Prabakar, R.S.; Sujatha, C.; Narayanan, S. Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper. J. Sound Vib. 2009, 326, 400–420. [Google Scholar] [CrossRef]
- Unger, A.; Schimmack, F.; Lohmann, B.; Schwarz, R. Application of LQ-based semi-active suspension control in a vehicle. Control Eng. Pract. 2013, 21, 1841–1850. [Google Scholar] [CrossRef]
- Fallah, M.S.; Bhat, R.; Xie, W.F. H∞ robust control of semi-active Macpherson suspension system: New applied design. Veh. Syst. Dyn. 2010, 48, 339–360. [Google Scholar] [CrossRef]
- Sun, L.; Cai, X.; Yang, J. Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion. J. Sound Vib. 2007, 301, 18–27. [Google Scholar] [CrossRef]
- Zapateiro, M.; Luo, N.; Karimi, H.R.; Vehi, J. Vibration control of a class of semiactive suspension system using neural network and backstepping techniques. Mech. Syst. Signal Process. 2009, 23, 1946–1953. [Google Scholar] [CrossRef]
- Guo, D.L.; Hu, H.Y.; Yi, J.Q. Neural network control for a semi-active vehicle suspension with a magnetorheological damper. J. Vib. Control 2004, 10, 461–471. [Google Scholar] [CrossRef]
- Yokoyama, M.; Hedrick, J.K.; Toyama, S. A model following sliding mode controller for semi-active suspension systems with MR dampers. In Proceedings of the 2001 American Control Conference, (Cat. No. 01CH37148), Arlington, VA, USA, 25–27 June 2001; Volume 4, pp. 2652–2657. [Google Scholar] [CrossRef]
- Alvarez-Sánchez, E. A Quarter-Car Suspension System: Car Body Mass Estimator and Sliding Mode Control. Procedia Technol. 2013, 7, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Hongbin, R.; Yuzhuang, Z.; Sizhong, C.; Gang, L. State observer based adaptive sliding mode control for semi-active suspension systems. J. Vibroeng. 2015, 17, 1464–1475. [Google Scholar]
- Available online: https://emphysis.github.io/pages/downloads/efmi_specification_1.0.0-alpha.3.html/ (accessed on 20 May 2021).
- Kropáč, O.; Múčka, P. Classification scheme for random longitudinal road unevenness considering road waviness and vehicle response. Shock Vib. 2009, 16, 273–289. [Google Scholar] [CrossRef]
- Vaiana, N.; Sessa, S.; Marmo, F.; Rosati, L. A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 2018, 93, 1647–1669. [Google Scholar] [CrossRef]
- Vaiana, N.; Sessa, S.; Rosati, L. A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech. Syst. Signal Process. 2021, 146, 106984. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
2.28 | kg | |
0.26 | kg | |
1399 | N/m | |
186 | N/m | |
23 | N·s/m | |
12,270 | N/m | |
40 | ms | |
5000 | N·s/m | |
3000 | N·s/m | |
5 | kg·m | |
2.5 | kg·m | |
a | 0.2 | m |
b | 0.37 | m |
c | 0.23 | m |
d | 0.23 | m |
Road Class | Degree of Roughness | ||
---|---|---|---|
Lower limit | Geometric mean | Upper limit | |
A | – | 1 | 2 |
B | 2 | 4 | 8 |
C | 8 | 16 | 32 |
D | 32 | 64 | 128 |
E | 128 | 256 | 512 |
F | 512 | 1024 | 2048 |
G | 2048 | 4096 | 8192 |
H | 8192 | 16,384 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljarbouh, A.; Fayaz, M.; Qureshi, M.S.; Boujoudar, Y. Hybrid Sliding Mode Control of Full-Car Semi-Active Suspension Systems. Symmetry 2021, 13, 2442. https://doi.org/10.3390/sym13122442
Aljarbouh A, Fayaz M, Qureshi MS, Boujoudar Y. Hybrid Sliding Mode Control of Full-Car Semi-Active Suspension Systems. Symmetry. 2021; 13(12):2442. https://doi.org/10.3390/sym13122442
Chicago/Turabian StyleAljarbouh, Ayman, Muhammad Fayaz, Muhammad Shuaib Qureshi, and Younes Boujoudar. 2021. "Hybrid Sliding Mode Control of Full-Car Semi-Active Suspension Systems" Symmetry 13, no. 12: 2442. https://doi.org/10.3390/sym13122442
APA StyleAljarbouh, A., Fayaz, M., Qureshi, M. S., & Boujoudar, Y. (2021). Hybrid Sliding Mode Control of Full-Car Semi-Active Suspension Systems. Symmetry, 13(12), 2442. https://doi.org/10.3390/sym13122442