Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment
<p>(<b>A</b>) El Porvenir Agricultural and Biotechnology Center—SENA; (<b>B</b>) Gallo Crudo Quarry.</p> "> Figure 2
<p>(<b>A</b>) Marble exploration front; (<b>B</b>) marble sample.</p> "> Figure 3
<p>Greenhouse experiments.</p> "> Figure 4
<p>X-ray diffractogram of the MD used in the presented experiment.</p> "> Figure 5
<p>Nutrients are available in soils with different marble dust treatments. Notes: C: percentages (%), S and P concentrations measured in mg kg<sup>−1</sup>, and Ca, Mg, K, Al + H, and cation exchange capacity in cmol + kg<sup>−1</sup>, (* <span class="html-italic">p</span> < 0.05). Standard errors of three replications are represented by vertical bars (I).</p> "> Figure 6
<p>Effects of treatments on the height of maize plants. Note: vertical bars (I) represent the standard error of three replications.</p> "> Figure 7
<p>Comparison of the size of maize plants in different treatments.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling of Soil, Marble Dust, and Seeds
2.3. Analytical Procedures
3. Results and Discussion
3.1. Mineralogy of MD
3.2. Chemical Composition of MD
3.3. Agronomic Performance of MD
3.4. Maize Growth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luthra, S.; Mangla, S.K.; Sarkis, J.; Tseng, M.L. Resources improvement and the circular economy: Sustainability potentials for mineral, mining and extraction sector in emerging economies. Resour. Policy 2022, 77, 102652. [Google Scholar] [CrossRef]
- Sohail, M.T.; Din, N.M. How do digital inclusion and energy security risks affect the trade of mineral resources? Evidence from world-leading mineral trading countries. Resour. Policy 2024, 89, 104528. [Google Scholar] [CrossRef]
- Marín, O.A.; Kraslawski, A.; Cisternas, L.A. Estimating processing costs for recovering valuable elements from mine tailings using dimensional analysis. Miner. Eng. 2022, 184, 107629. [Google Scholar] [CrossRef]
- Portuphy, M.O.; Katayama, K.; Kanta, A.; Takeishi, T.; Akashi, K. Tritium Behavior in Soil and Mineral Rock Components used for Plant Cultivation. Appl. Radiat. Isot. 2024, 210, 111344. [Google Scholar] [CrossRef]
- Mideksa, B.; Muluken, G.; Eric, N. The impact of soil and water conservation practices on food security in eastern Ethiopia. The propensity score matching approach. Agric. Water Manag. 2023, 289, 108510. [Google Scholar] [CrossRef]
- Teneva, L.; Free, C.M.; Hume, A.; Agostini, V.N.; Klein, C.J.; Watson, R.A.; Gaines, S.D. Small island nations can achieve food security benefits through climate-adaptive blue food governance by 2050. Mar. Policy 2023, 151, 105577. [Google Scholar] [CrossRef]
- Rodríguez, A.; Van Grinsven, H.J.; Van Loon, M.P.; Doelman, J.C.; Beusen, A.H.; Lassaletta, L. Costs and benefits of synthetic nitrogen for global cereal production in 2015 and in 2050 under contrasting scenarios. Sci. Total Environ. 2024, 912, 169357. [Google Scholar] [CrossRef]
- Moro, L.D.; Pauli, J.; Maculan, L.S.; Neckel, A.; Pivoto, D.; Laimer, C.G.; Bodah, E.T.; Bodah, B.W.; Dornelles, V.D.C. Sustainability in agribusiness: Analysis of environmental changes in agricultural production using spatial geotechnologies. Environ. Dev. 2023, 45, 100807. [Google Scholar] [CrossRef]
- Echeverry-Vargas, L.; Rojas-Reyes, N.R.; Ocampo-Carmona, L.M. Recovery of light rare earth elements, cerium, lanthanum, and neodymium from alluvial gold mining waste from the Bagre-Nechí mining district in Colombia using acid leaching, oxalate precipitation and calcination. Hydrometallurgy 2023, 216, 106009. [Google Scholar] [CrossRef]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Tozsin, G.; Öztaş, T.; Arol, A.İ.; Kalkan, E.; Koç, E. The effects of marble wastes on acidic soil neutralization and hazelnut yield. J. Undergr. Resour. 2015, 81, 29–36. [Google Scholar]
- Fernández-Caliani, J.C.; Giráldez, I.; Fernández-Landero, S.; Barba-Brioso, C.; Morales, E. Long-term sustainability of marble waste sludge in reducing soil acidity and heavy metal release in a contaminated mine technosol. Appl. Sci. 2022, 12, 6998. [Google Scholar] [CrossRef]
- Bauwhede, R.V.D.; Muys, B.; Vancampenhout, K.; Smolders, E. Accelerated weathering of silicate rock dusts predicts the slow-release liming in soils depending on rock mineralogy, soil acidity, and test methodology. Geoderma 2024, 441, 116734. [Google Scholar] [CrossRef]
- Jain, A.; Jha, A.; Shivanshi. Geotechnical behavior and micro-analyses of expansive soil amended with marble dust. Soils Found. 2020, 60, 737–751. [Google Scholar] [CrossRef]
- Lourdes, A.A.; Penagos-Londoño, G.I. Mixture modeling segmentation and singular spectrum analysis to model and forecast an asymmetric condor-like option index insurance for Colombian coffee crops. Clim. Risk Manag. 2022, 35, 100421. [Google Scholar]
- Neckel, A.; Pinto, D.; Adelodun, B.; Dotto, G.L. An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete. Sustainability 2022, 14, 3943. [Google Scholar] [CrossRef]
- Rizzo, G.; D’Agostino, F.; Ercoli, L. Problems of soil and groundwater pollution in the disposal of “marble” slurries in NW Sicily. Environ. Geol. 2008, 55, 929–935. [Google Scholar] [CrossRef]
- Amena, S.; Kabeta, W.F. Mechanical behavior of plastic strips-reinforced: Expansive soils stabilized with waste marble dust. Civil Adv. Eng. 2022, 1, 9807449. [Google Scholar] [CrossRef]
- Thakur, A.K.; Pappu, A.; Thakur, V.K. Resource efficiency impact on marble waste recycling towards sustainable green construction materials. Curr. Opin. Green Sustain. Chem. 2018, 13, 91–101. [Google Scholar] [CrossRef]
- Nakata, K.; Ozaki, T.; Terashima, C.; Fujishima, A.; Einaga, Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem. 2014, 53, 871–874. [Google Scholar] [CrossRef]
- Benavente, D.; Pla, C.; Valdes-Abellan, J.; Cremades-Alted, S. Remediation by waste marble powder and lime of jarosite-rich sediments from Portman Bay (Spain). Environ. Pollut. 2020, 264, 114786. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Barriga, F.; Díaz, V.; Acosta, J.A.; Muñoz, M.Á.; Faz, Á.; Zornoza, R. Organic matter dynamics, soil aggregation, microbial biomass, and activity in Technosols created with metalliferous mine residues, biochar, and marble waste. Geoderma 2017, 301, 19–29. [Google Scholar] [CrossRef]
- Carrillo-González, R.; Gatica García, B.G.; González-Chávez, M.D.C.A.; Solís Domínguez, F.A. Trace elements adsorption from solutions and acid mine drainage using agricultural by-products. Soil Sediment Count. Int. J. 2022, 31, 348–366. [Google Scholar] [CrossRef]
- INGEOMINAS—Colombian Institute of Geology and Mining. Inventory and Environmental Mineral Diagnosis of the Department of Córdoba. Guidelines for the Environmental Mining Ordinance 2023. Available online: https://recordcenter.sgc.gov.co/B9/22004050020441/documento/pdf/2105204411122000.pdf (accessed on 10 June 2024).
- NTC 3656; Soil: Take Samples of Soil to Determine Contamination. ICONTEC: Bogota, Colombia, 1994; pp. 11–23.
- Osorio, N.W. How to determine soil lime requirements. Integral Soil Manag. Plant Nutr. 2012, 1, 5. [Google Scholar]
- NTC 5403; Soil: Take Samples of Soil to Determine Contamination. ICONTEC: Bogota, Colombia, 2013.
- Rabel, D.O.; Motta, A.C.V.; Barbosa, J.Z.; Prior, S.A. Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil. Acta Sci. Agron. 2018, 40, e39320. [Google Scholar] [CrossRef]
- Ramos, C.G.; Hower, J.C.; Blanco, E.; Oliveira, M.L.S.; Theodoro, S.H. Possibilities of using silicate rock powder: An overview. Geosci. Front. 2022, 13, 101185. [Google Scholar] [CrossRef]
- Ballestas, E.R.; Bortoluzzi, E.C.; Minervino, A.H.H.; Palma, H.H.; Neckel, A.; Ramos, C.G.; Moreno-Ríos, A.L. Power generation potential of plant microbial fuel cells as a renewable energy source. Renew. Energy 2024, 221, 119799. [Google Scholar] [CrossRef]
- Neckel, A.; Oliveira, M.L.S.; Maculan, L.S.; Adelodun, B.; Toscan, P.C.; Bodah, B.W.; Moro, L.D.; Silva, L.F.O. Terrestrial nanoparticle contaminants and geospatial optics using the Sentinel-3B OLCI satellite in the Tinto River estuary region of the Iberian Peninsula. Mar. Pollut. Bull. 2022, 187, 114525. [Google Scholar] [CrossRef]
- Minato, E.A.; Brignoli, F.M.; Neto, M.E.; Besen, M.R.; Cassim, B.M.A.R.; Lima, R.S.; Tormena, C.A.; Inoue, T.T.; Batista, M.A. Lime and gypsum application to low-acidity soils: Changes in soil chemical properties, residual lime content and crop agronomic performance. Soil Tillage Res. 2023, 234, 105860. [Google Scholar] [CrossRef]
- Tiecher, T.; Fontoura, S.M.; Ambrosini, V.G.; Araújo, E.A.; Alves, L.A.; Bayer, C.; Gatiboni, L.C. Soil phosphorus forms and fertilizer use efficiency are affected by tillage and soil acidity management. Geoderma 2023, 435, 116495. [Google Scholar] [CrossRef]
- Vargas, J.P.de.; Santos, D.R.D.; Bastos, M.C.; Schaefer, G.; Parisi, P.B. Application forms and types of soil acidity correction: Changes in depth chemical attributes in long-term period experiment. Soil Tillage Res. 2019, 185, 47–60. [Google Scholar] [CrossRef]
- Brandely, M.; Coussy, S.; Blanc-Biscarat, D.; Gourdon, R. Assessment of Molybdenum and Antimony speciation in excavated rocks and soils from the Parisian basin using mineralogical and chemical analyzes coupled to geochemical modeling. Appl. Geochem. 2022, 136, 105129. [Google Scholar] [CrossRef]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef] [PubMed]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Vinh, H.Q.; Lhomme, T.; Maluski, H.; Pêcher, A.; et al. Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geol. Rev. 2008, 34, 169–191. [Google Scholar] [CrossRef]
- Cortés, J.; Mejía-Molina, A.; Morton, A.; Vargas, C.; Cortés, S. Provenance, tectonic setting, and weathering of sediments in Tumaco-1 ST-P well, Tumaco forearc basin, Colombia: Insights from petrography, heavy minerals, X-ray diffraction, and whole-rock chemostratigraphy. J. S. Am. Earth Sci. 2019, 96, 102219. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.P.; Durán-Suárez, J.A.; Castro-Gomes, J. Study the correlation of the mechanical resistance properties of Macael white marble using destructive and non-destructive techniques. Constr. Build. Mater. 2024, 418, 135400. [Google Scholar] [CrossRef]
- Alderton, D. Other silicates: The AL2SIO5 Polymorphs, Cordierite, Staurolite, Epidote, Chlorite and Serpentine. In Encyclopedia of Geology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 368–381. [Google Scholar]
- Ruiz-Morales, G.A.; Menéndez-Sierra, A.; Fossatti-Carrillo, A. Determination of buffer capacity and CaCO3 dosage of degraded soils in the district of Ñürüm, Cerro Pelado, Comarca Ngäbe Bugle, Panama. Agric. Investig. Mag. 2023, 6, 91–106. [Google Scholar] [CrossRef]
- Gilliham, M.; Dayod, M.; Hocking, B.J.; Xu, B.; Conn, S.J.; Kaiser, B.N. Calcium delivery and storage in plant leaves: Exploring the link with water flow. J. Exp. Bot. 2011, 62, 2233–2250. [Google Scholar] [CrossRef]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop J. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Ciećko, Z.; Żołnowski, A.C.; Mierzejewska, A. Impact of foliar nitrogen and magnesium fertilization on concentration of chlorophyll in potato leaves. Ecol. Chem. Eng. A 2012, 19, 525–535. [Google Scholar]
- Ramos, C.G.; Querol, X.; Dalmora, A.C.; De Jesus Pires, K.C.; Schneider, I.A.H.; Oliveira, L.F.S.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [Google Scholar] [CrossRef]
- Haynes, R.J. A contemporary overview of silicone availability in agricultural soils. J. Plant Nutr. Soil Sci. 2014, 177, 831–844. [Google Scholar] [CrossRef]
- Holland, J.; Bennett, A.; Newton, A.; White, P.; McKenzie, B.; George, T.; Pakeman, R.; Bailey, J.; Fornara, D.; Hayes, R. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2017, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Burbano, D.; Theodoro, S.; De Carvalho, A.; Ramos, C. Crushed volcanic rock as soil remineralizer: A strategy to overcome the global fertilizer crisis. Nat. Resour. Res. 2022, 31, 2197–2210. [Google Scholar] [CrossRef]
- Raymundo, V.; Neves, M.A.; Cardoso, M.S.; Bregonci, I.S.; Lima, J.S.; Fonseca, A.B. Marble sawdust residues as a soil acidity corrector. Braz. J. Agric. Environ. Eng. 2013, 17, 47–53. [Google Scholar]
- Prado, R.D.M.; Natale, W.; Feernandes, F.M.; Corrêa, M.C.M. Reactivity of a steel slag in a dystrophic red oxisol. Braz. J. Agric. Environ. Eng. 2024, 28, 197–205. [Google Scholar]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Luchese, A.V.; De Castro Leite, I.J.G.; Da Silva Giaretta, A.P.; Alves, M.L.; Pivetta, L.A.; Missio, R.F. Use of quarry waste basalt rock powder as a soil remineralizer to grow soybean and maize. Heliyon 2023, 9, e14050. [Google Scholar] [CrossRef]
- Dalmora, A.C.; Müller Kautzmann, R.; Staub, J.; Homrich Schneider, I.A. Crushed amygdaloidal basalt rock and its effects on tomato production. LADEE 2022, 3, 2. [Google Scholar] [CrossRef]
- Tozsin, G.; Oztas, T.; Arol, A.I.; Kalkan, E.; Duyar, O. The effects of marble waste on soil properties and hazelnut yield. J. Clean. Prod. 2014, 81, 146–149. [Google Scholar] [CrossRef]
- Ramos, C.G.; dos Santos de Medeiros, D.; Gomez, L.; Silva Oliveira, L.F.; Schneider, H.I.A.; Kautzmann, R.M. Evaluation of Soil Re-mineralizer from By-Product of Volcanic Rock Mining: Experimental Proof Using Black Oats and Maize Crops. Nat. Resour. Res. 2020, 29, 1583–1600. [Google Scholar] [CrossRef]
- Nowaki, R.H.D.; Parent, S.; Filho, A.B.C.; Rozane, D.E.; Meneses, N.B.; Da Silva, J.A.D.S.; Natale, W.; Parent, L.E. Phosphorus Over-Fertilization and nutrient misbalance of irrigated tomato crops in Brazil. Front. Plant Sci. 2017, 8, 825. [Google Scholar] [CrossRef] [PubMed]
- Bakken, A.K.; Gautneb, H.; Sveistrup, T.; Myhr, K. Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutr. Cycl. Agroecosyst. 2000, 56, 53–57. [Google Scholar] [CrossRef]
- Santos, W.O.; Mattiello, E.M.; Vergutz, L.; Costa, R.F. Production and evaluation of potassium fertilizers from silicate rock. J. Plant Nutr. Soil Sci. 2016, 179, 547–556. [Google Scholar] [CrossRef]
- Rodrigues, M.; Da Silva Junges, L.F.; Mozorovicz, C.; Ziemmer, G.S.; Neto, C.K.; De Andrade, E.A.; Passos, A.I.D.; Pacheco, F.P.; Cezar, E.; De Melo Teixeira, L. Paraná Basin basalt Powder: A multinutrient soil amendment for enhancing soil chemistry and microbiology. J. S. Am. Earth Sci. 2024, 141, 104957. [Google Scholar] [CrossRef]
- Santos, A.M.F.D. Alternative for potassium fertilization of vegetables in organic management in low fertility natural soil of the humid tropics. Emir. J. Food Agric. 2020, 32, 181–187. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Leonardos, O.H.; Rocha, E.; Macedo, I.; Rego, K.G. Stonemeal of Amazon soils with sediments from reservoirs: A case study of remineralization of the Tucuruí degraded land for agroforest reclamation. An. Braz. Acad. Soil Sci. 2013, 85, 23–34. [Google Scholar] [CrossRef]
- Jones, J.; Guinel, F.; Antunes, P. Carbonatites as rock fertilizers: A review. Rhizosphere 2020, 13, 100188. [Google Scholar] [CrossRef]
- Cardozo, E.; Pinto, V.; Nadaleti, W.; Thue, P.; Santos, M.D.; Gomes, C.; Ribeiro, A.; Silva, A.C.; Vieira, B. Sustainable agricultural practices: Volcanic rock potential for soil remineralization. J. Clean. Prod. 2024, 466, 142876. [Google Scholar] [CrossRef]
- Sublett, W.; Barickman, T.; Sams, C. The effect of environment and nutrients on hydroponic lettuce yield, quality, and phytonutrients. Horticulturae 2018, 4, 48. [Google Scholar] [CrossRef]
- Suhr, N.; Schoenberg, R.; Chew, D.; Rosca, C.; Widdowson, M.; Kamber, B.S. Elemental and isotopic behavior of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils. Sci. Total Environ. 2018, 619–620, 1451–1463. [Google Scholar] [CrossRef] [PubMed]
- Rossit, D.; Pais, C.; Weintraub, A.; Broz, D.; Frutos, M.; Tohmé, F. Stochastic forestry harvest planning under soil compaction conditions. J. Environ. Manag. 2021, 296, 113157. [Google Scholar] [CrossRef] [PubMed]
Oxides | (%) |
---|---|
CaO | 54.55 |
Fe2O3 | 4.55 |
SiO2 | 3.21 |
Al2O3 | 1.35 |
MgO | 0.27 |
K2O | 0.15 |
LOI at 1000 °C | 35.92 |
Total | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puche, J.O.C.; Bodah, B.W.; Salas, K.E.M.; Palma, H.H.; Theodoro, S.H.; Neckel, A.; Moreno-Ríos, A.L.; Mores, G.; Silva, C.C.O.d.A.; Dal Moro, L.; et al. Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment. Sustainability 2024, 16, 10076. https://doi.org/10.3390/su162210076
Puche JOC, Bodah BW, Salas KEM, Palma HH, Theodoro SH, Neckel A, Moreno-Ríos AL, Mores G, Silva CCOdA, Dal Moro L, et al. Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment. Sustainability. 2024; 16(22):10076. https://doi.org/10.3390/su162210076
Chicago/Turabian StylePuche, Johnny Oliver Corcho, Brian William Bodah, Karen Esther Muñoz Salas, Hugo Hernández Palma, Suzi Huff Theodoro, Alcindo Neckel, Andrea Liliana Moreno-Ríos, Giana Mores, Caliane Christie Oliveira de Almeida Silva, Leila Dal Moro, and et al. 2024. "Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment" Sustainability 16, no. 22: 10076. https://doi.org/10.3390/su162210076
APA StylePuche, J. O. C., Bodah, B. W., Salas, K. E. M., Palma, H. H., Theodoro, S. H., Neckel, A., Moreno-Ríos, A. L., Mores, G., Silva, C. C. O. d. A., Dal Moro, L., Cardoso, G. T., & Ramos, C. G. (2024). Utilizing Marble Waste for Soil Acidity Correction in Colombian Caribbean Agriculture: A Sustainability Assessment. Sustainability, 16(22), 10076. https://doi.org/10.3390/su162210076