Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review
<p>The increase in CO<sub>2</sub> concentration in the atmosphere (source: [<a href="#B8-sustainability-13-01318" class="html-bibr">8</a>]).</p> "> Figure 2
<p>CO<sub>2</sub> emission in the atmosphere over the years (1850–2020) (Source: [<a href="#B11-sustainability-13-01318" class="html-bibr">11</a>]).</p> "> Figure 3
<p>Global land and ocean temperature anomalies over the base period (1901–2000) (source: [<a href="#B15-sustainability-13-01318" class="html-bibr">15</a>]).</p> "> Figure 4
<p>Global precipitation anomalies over the base period (1901–2000) (source: [<a href="#B11-sustainability-13-01318" class="html-bibr">11</a>]).</p> "> Figure 5
<p>Method for selection of research papers for review and analysis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Causes of Climate Change
4. Climate Change and Agriculture
5. Mitigation and Adaptation to Climate Change
6. Economic Impact of Climate Change and Climate-Smart Agriculture Technologies
7. Conclusions and Prospects
- Greenhouse-gas emissions at the global level are raising the CO2 content in the atmosphere, raising the global temperature due to greenhouse effect. However, landmasses have witnessed a higher increase in temperature than oceans.
- The precipitation scenario is altered, and more weather extremes are projected to be witnessed in the near future.
- Climate change is projected to have a deleterious impact on agricultural productivity. The raised temperature and altered precipitation are most likely to offset the positive impact of increased CO2 on plants.
- The warmer and humid climate created due to climate change is creating more horizons for pest infestations.
- Those climate-resilient technologies that are technically sound and economically viable must be framed using an interdisciplinary approach to mitigate climate change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization. International Meteorological Vocabulary, 2nd ed.; WMO: Geneva, Switzerland, 1992. [Google Scholar]
- IPCC. Climate change 2007: Impacts, adaptation and vulnerability. In Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Sathaye, J.; Shukla, P.R.; Ravindranath, N.H. Climate change, sustainable development and India: Global and national concerns. Curr. Sci. 2006, 90, 314–325. [Google Scholar]
- Abeydeera, L.H.U.W.; Mesthrige, J.W.; Samarasinghalage, T.I. Global research on carbon emissions: A scientometric review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef] [Green Version]
- NASA Earth Observatory. Goddard Space Flight Centre United States. Available online: www.earthobservatory.nasa.gov (accessed on 15 May 2020).
- Arora, M.; Goel, N.K.; Singh, P. Evaluation of temperature trends over India/ Evaluation de tendances de temperature en Inde. Hydrol. Sci. J. 2005, 50, 81–93. [Google Scholar] [CrossRef]
- NOAA. Earth System Research Laboratory (NOAA). 2020. Available online: www.esrl.noaa.gov (accessed on 15 December 2020).
- CDIAC. Carbon Dioxide Information Analysis Center. 2020. Available online: www.cdiac.ess-dive.lbl.gov (accessed on 13 November 2020).
- Tol, R.S.J. The economic impact of climate change in the 20th and 21st centuries. Clim. Chang. 2013, 117, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Our World in Data. Available online: www.ourworldindata.org (accessed on 4 December 2020).
- Richie, H.; Roser, M. Our World in Data. CO2 and Greenhouse Emissions. 2017. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 12 November 2020).
- Wei, T.; Yang, S.; Moore, J.C.; Shi, P.; Cui, X.; Duan, Q.; Xu, B.; Dai, Y.; Yuan, W.; Wei, X.; et al. Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc. Natl. Acad. Sci. USA 2012, 109, 12911–12915. [Google Scholar] [CrossRef] [Green Version]
- Hare, B.; Meinshausen, M. How much warming are we committed to and how much can be avoided? Clim. Chang. 2006, 75, 111–149. [Google Scholar] [CrossRef]
- NCDC. National Climatic Data Center-National Center for Environmental Information (NOAA). 2020. Available online: www.ncdc.noaa.gov (accessed on 11 December 2020).
- Bokhari, S.A.A.; Rasul, G.; Ruane, A.C.; Hoogenboom, G.; Ahmad, A. The past and future changes in climate of the rice-wheat cropping zone in Punjab, Pakistan. Pak. J. Meteorol. 2017, 13, 9–23. [Google Scholar]
- Kaur, N.; Kaur, P. Projected climate change under different scenarios in central region of Punjab, India. J. Agrometeorol. 2016, 18, 88–92. [Google Scholar]
- Chen, H.; Sun, J. Projected changes in climate extremes in China in a 1.5C warmer world. Int. J. Climatol. 2018, 38, 3607–3617. [Google Scholar] [CrossRef]
- Rajbhandari, R.; Shrestha, A.B.; Kulkarni, A.; Patwardhan, S.K.; Bajracharya, S.R. Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim. Dyn. 2015, 44, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Ning, L.; Riddle, E.E.; Bradley, R.S. Projected changes in climate extremes over the Northeastern United States. J. Climate 2015, 28, 3289–3310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Nearing, M.A.; Zhang, X.C.; Xie, Y.; Wei, H. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China. J. Hydrol. 2010, 384, 97–106. [Google Scholar] [CrossRef]
- Zaveri, E.; Russ, J.; Damania, R. Rainfall anomalies are a significant driver of cropland expansion. Proc. Natl. Acad. Sci. USA 2020, 117, 10225–10233. [Google Scholar] [CrossRef]
- Betts, R.A.; Alfieri, L.; Bradshaw, C.; Caeser, J.; Feyen, L.; Friedlingstein, P.; Gohar, L.; Koutroulis, A.; Lewis, K.; Morfopoulos, C.; et al. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 °C and 2 °C global warming with a higher-resolution global climate model. Phil. Trans. R. Soc. A 2018, 376, 20160452. [Google Scholar] [CrossRef] [PubMed]
- World Population Review. Walnut, United States. Available online: www.worldpopulationreview.com (accessed on 12 May 2020).
- Alexandratos, N.; Bruinsma, J. World Agriculture: Towards 2030/2050; ESA Working Paper No. 12–03; FAO: Rome, Italy, 2012. [Google Scholar]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.; Ahmad, P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J. Biol. Sci. 2020. [Google Scholar] [CrossRef]
- Baul, T.K.; McDonald, M. Integration of Indigenous knowledge in addressing climate change. Indian J. Tradit. Knowl. 2015, 1, 20–27. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The prisma group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar]
- Fargnoli, M.; Lombardi, M. Safety vision of Agricultural tractors: An engineering perspective based on recent studies (2009–2019). Safety 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.I.; Kaufmann, R.K. Anthropogenic and natural causes of climate change. Clim. Chang. 2014, 122, 257–269. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Groenigen, K.J.V.; Osenberg, C.W.; Hungate, B.A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 2011, 475, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Popp, A.; Lotze-Campen, H.; Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Chang. 2010, 20, 451–462. [Google Scholar] [CrossRef]
- O’Mara, F.P. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Technol. 2011, 166–167, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Lesschen, J.P.; Berg, M.V.D.; Westhoek, H.J.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166–167, 16–28. [Google Scholar] [CrossRef]
- Kahrl, F.; Li, Y.; Su, Y.; Tennigkeit, T.; Wilkes, A.; Xu, J. Greenhouse gas emissions from nitrogen fertilizer use in China. Environ. Sci. Policy 2010, 13, 688–694. [Google Scholar] [CrossRef]
- Soltani, A.; Rajabi, M.H.; Zeinali, E.; Soltani, E. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 2013, 50, 54–61. [Google Scholar] [CrossRef]
- Mendelsohn, R. The impact of climate change on agriculture in developing countries. J. Nat. Res. Policy Res. 2009, 1, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.M.; Hurd, B.H.; Lenhart, S.; Leary, N. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Karimi, V.; Karimi, E.; Keshavarz, M. Climate change and agriculture: Impacts and adaptive responses in Iran. J. Integr. Agric. 2018, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Molua, E.L.; Lambi, C.M. The Economic Impact of Climate Change on Agriculture in Cameroon; Policy Research Working Paper; The World Bank: Washington, DC, USA, 2007; pp. 1–31. [Google Scholar]
- Gay, C.; Estrada, F.; Conde, C.; Eakin, H.; Villers, L. Potential impacts of climate change on Agriculture: A case of study of coffee production in Veracruz, Mexico. Clim. Chang. 2006, 79, 259–288. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Mahato, A. Climate change and its impact on agriculture. Int. J. Sci. Res. Publ. 2014, 4, 1–6. [Google Scholar]
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Liverman, D. Predicted effects of climate change on agriculture: A comparison of temperate and tropical regions. In Global Climate Change: Implications, Challenges, and Mitigation Measures; Majumdar, S.K., Ed.; PA The Pennsylvania Academy of Sciences: Grove City, PA, USA, 1992; pp. 342–361. [Google Scholar]
- Zhang, P.; Zhang, J.; Chen, M. Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manag. 2017, 83, 8–31. [Google Scholar] [CrossRef]
- Powell, J.P.; Reinhard, S. Measuring the effects of extreme weather events on yields. Weather Clim. Extrem. 2016, 12, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ye, W.; Wang, M.; Yan, X. Climate change and drought: A risk assessment of crop-yield impacts. Clim. Res. 2009, 39, 31–46. [Google Scholar] [CrossRef]
- Stevanovic, M.; Popp, A.; Campen, H.L.; Dietrich, J.P.; Muller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenoder, F.; Weindl, I. The impact of high-end climate change on agricultural welfare. Sci. Adv. 2016, 2, e1501452. [Google Scholar] [CrossRef] [Green Version]
- Bosello, F.; Zhang, J. Assessing Climate Change Impacts: Agriculture; FEEM Working Paper No. 94.05; CMCC Research Paper No. 2; Elsevier: New York, NY, USA, 2005; Available online: https://ssrn.com/abstract=771245 (accessed on 18 January 2021). [CrossRef] [Green Version]
- Kumar, R.; Gautam, H.R. Climate change and its impact on agricultural productivity in India. J. Climatol. Weather Forecast. 2014, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, U.; Saboor, A.; Ali, I.; Mohsin, A.Q. Impact of climate change on agriculture: Empirical evidence from arid region. Pak. J. Agri. Sci. 2011, 48, 327–333. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waha, K.; Muller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Dey, M.M.; Gosh, K.; Valmonte-Santos, R.; Rosegrant, M.W.; Chen, O.L. Economic impact of climate change and climate change adaptation strategies for fisheries sector in Solomon Islands: Implication for food security. Mar. Policy 2016, 67, 171–178. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R.P.; Bonfante, A.; Lorenzi, F.D.; Dury, M.; Gloning, P.; Jaoude, R.A.; et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Chang. Biol. 2012, 19, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.B.; Brady, S.M. Plant developmental responses to climate change. Dev. Biol. 2016, 419, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L.; Bala, G.; Caldeira, K.; Nemani, R.; Ban-Weiss, G. Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. USA 2010, 107, 9513–9518. [Google Scholar] [CrossRef] [Green Version]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Aydinalp, C.; Cresser, M. The effects of global climate change on agriculture. Am. Eur. J. Agric. Environ. Sci. 2008, 3, 672–676. [Google Scholar]
- Seo, S.N.; Mendelsohn, R.; Munasinghe, M. Climate change and agriculture in Sri Lanka: A Ricardian valuation. Environ. Dev. Econ. 2005, 10, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Zilberman, D.; Liu, X.; Holst, D.R.; Sunding, D. The economics of climate change in agriculture. Mitig. Adapt. Strateg. Glob. Chang. 2004, 9, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Lal, M.; Singh, K.K.; Rathore, L.S.; Srinivasan, G.; Saseendram, S.A. Vulnerability of rice and wheat yields in NW India to future changes in climate. Agric. For. Meteorol. 1998, 89, 101–114. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Nosberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef] [PubMed]
- Deryng, D.; Elliott, J.; Folberth, C.; Muller, C.; Pugh, T.A.M.; Boote, K.J.; Conway, D.; Ruane, A.C.; Gerten, D.; Jones, J.W.; et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Chang. 2016, 6, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Uddling, J.; Broberg, M.C.; Feng, Z.; Pleijel, H. Crop quality under rising atmospheric CO2. Curr. Opin. Plant Biol. 2018, 45, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Madan, P.; Jagadish, S.V.K.; Craufurd, P.Q.; Fitzgerald, M.; Lafarge, T.; Wheeler, T.R. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J. Exp. Bot. 2012, 63, 3843–3852. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef]
- Kaur, J.; Gosal, S.K.; Kaur, P. Effects of climate change on plant associated microbial communities and enzyme activities. Afr. J. Microbiol. Res. 2014, 8, 3087–3093. [Google Scholar]
- Compant, S.; Heijden, M.G.A.V.D.; Sessitsch, A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 2010, 73, 197–214. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Gryze, S.D.; Six, J. Effect of climate change on field crop production in California’s central valley. Clim. Chang. 2011, 109, S335–S353. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, L.; Huang, M.; Yao, Y.; Bassu, S.; Clais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Wang, D.; Laurent, R. Impact of climate change on crop yield: A case study of rainfed corn in Central Illinois. J. Appl. Meteorol. Climatol. 2009, 48, 1868–1881. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Xu, Y.; Hayashi, Y.; Zhang, Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. For. Meteorol. 2006, 138, 82–92. [Google Scholar] [CrossRef]
- Liu, L.; Basso, B. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in US Midwest. PLoS ONE 2020, 15, e0225433. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Climate-driven crop yield and yield variability and climate change impacts on the U.S. great plains agricultural production. Sci. Rep. 2018, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Elad, Y.; Pertot, I. Climate change impact on plant pathogens and plant diseases. J. Crop Improv. 2014, 28, 99–139. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesius, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events—Implications for food production, plant diseases, and pests. Glob. Chang. Human Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Shrestha, S. Effects of climate change in Agricultural Insect Pest. Acta Scient. Agric. 2019, 3, 74–80. [Google Scholar] [CrossRef]
- Ghini, R.; Hamada, E.; Junior, M.J.P.; Marengo, J.A.; Goncalves, R.R.V. Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesqui. Agropecu. Braileira 2008, 43, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; McCarl, B.A. An investigation of the relationship between pesticide usage and climate change. Clim. Chang. 2001, 50, 475–487. [Google Scholar] [CrossRef]
- Kocmankova, E.; Trnka, M.; Eitzinger, J.; Formayer, H.; Dubrovsky, M.; Semeradova, D.; Zalud, Z.; Juroch, J.; Mozny, M. Estimating the impact of climate change on the occurrence of selected pests in Central European region. Clim. Res. 2010, 44, 95–105. [Google Scholar] [CrossRef]
- Aljaryian, R.; Kumar, L. Changing global risk of invading greenbug Schizaphis graminum under climate change. Crop Prot. 2016, 88, 137–148. [Google Scholar] [CrossRef]
- Hof, A.R.; Svahlin, A. The potential effect of climate change on insect pest species’ geographical distribution in the Swedish boreal forest. Scand. J. For. Res. 2015, 31, 1–15. [Google Scholar] [CrossRef]
- Kroschel, J.; Sporleder, M.; Tonnang, H.E.Z.; Juarez, H.; Carhuapoma, P.; Gonzales, J.C.; Simon, R. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric. For. Meteorol. 2013, 170, 228–241. [Google Scholar] [CrossRef]
- Luck, J.; Spackman, M.; Freeman, A.; Trebicki, P.; Griffiths, W.; Finlay, K.; Chakraborty, S. Climate change and diseases of food crops. Plant Pathol. 2011, 60, 113–121. [Google Scholar] [CrossRef]
- Reddy, P.P. Impact of climate change on insect pests, pathogens and nematodes. Pest Manag. Hortic. Ecosyst. 2013, 19, 225–233. [Google Scholar]
- Lamichhane, J.R.; Barzman, M.; Booij, K.; Boonekamp, P.; Desneux, N.; Huber, L.; Kudsk, P.; Langrell, S.R.H.; Ratnadass, A.; Ricci, O.; et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 2015, 35, 443–459. [Google Scholar] [CrossRef]
- Biber-Freudenberger, L.; Ziemacki, J.; Tonnang, H.E.Z.; Borgemeister, C. Future risks of pest species under changing climatic conditions. PLoS ONE 2016, 11, e0153237. [Google Scholar] [CrossRef]
- Gautam, H.R.; Bhardwaj, M.L.; Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. 2013, 105, 1685–1691. [Google Scholar]
- Korres, N.E.; Norsworthy, J.K.; Tehranchian, P.; Gitsopoulos, T.K.; Loka, D.A.; Oosterhuis, D.M.; Gealy, D.R.; Moss, S.R.; Burgos, N.R.; Miller, M.R.; et al. Cultivars to face climate change on crops and weeds: A review. Agron. Sustain Dev. 2016, 36, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Malhi, G.S.; Rana, M.C.; Rana, S.S.; Kaushik, P. Effect of individual or combined application of herbicide imazethapyr on nutrient uptake by blackgram (Vigna mungo L.). J. Exp. Biol. Agric. Sci. 2020, 8, 441–446. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agr. 2016, 135, 108–138. [Google Scholar]
- Bajwa, A.A.; Farooq, M.; Al-Sadi, A.M.; Nawaz, A.; Jabran, K.; Siddique, K.H.M. Impact of climate change on biology and management of wheat pests. Crop Prot. 2020, 137, 105304. [Google Scholar] [CrossRef]
- Semenza, J.C.; Ploubidis, G.B.; George, L.A. Climate change and climate variability: Personal motivation for adaptation and mitigation. Environ. Health 2011, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vuuren, D.P.V.; Issac, M.; Kundzewicz, Z.W.; Arnell, N.; Barker, T.; Criqui, P.; Berkhout, F.; Hilderink, H.; Hinkel, J.; Hof, A.; et al. The use of scenarios as the basis for combined assessment of climate change mitigation and mitigation. Glob. Environ. Chang. 2010, 21, 575–591. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Groffman, P.M.; Millar, N.; Dell, C.; Rotz, A. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A. Climate change education for mitigation and adaptation. J. Educ. Sustain. Dev. 2012, 6, 191–206. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Morton, L.W.; Hobbs, J. Understanding farmer perspectives on climate change adaptation and mitigation: The roles of trust in sources of climate information, climate change beliefs, and perceived risk. Environ. Behav. 2015, 47, 205–234. [Google Scholar] [CrossRef]
- Smith, P.; Olesen, J.E. Synergies between the mitigation of, and adaptation to, climate change in agriculture. J. Agric. Sci. 2010, 148, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Ventakeswarlu, B.; Shanker, A.K. Climate change and agriculture: Adaptation and mitigation strategies. Indian J. Agr. 2009, 54, 226–230. [Google Scholar]
- Sandhu, S.S.; Kaur, P.; Gill, K.K.; Vashisth, B.B. The effect of recent climate shifts on optimal sowing windows for wheat in Punjab, India. J. Water Clim. Chang. 2019, 11, 1177–1190. [Google Scholar] [CrossRef]
- Verchot, L.V.; Noordwijk, M.V.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 901–918. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, P.K. Global climate change and Indian agriculture: Impacts, adaptation and mitigation. Indian J. Agric. Sci. 2008, 78, 911–919. [Google Scholar]
- Lybbert, T.J.; Sumner, D.A. Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy 2012, 37, 114–123. [Google Scholar] [CrossRef]
- Pisante, M.; Stagnari, F.; Acutis, M.; Bindi, M.; Brilli, L.; Stefano, V.D.; Carozzi, M. Conservation agriculture and climate change. In Conservation Agriculture; Farooq, M., Siddique, K., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Erenstein, O.; Sayre, K.; Wall, P.; Hellin, J.; Dixon, J. Conservation agriculture in Maize and Wheat based systems in the (sub)tropics: Lessons from adaptation initiatives in South Asia, Mexico, and Southern Africa. J. Sustain. Agric. 2012, 36, 180–206. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Brown, B.; Llewellyn, R.; Nuberg, I. Global learnings to inform the local adaptation of conservation agriculture in Eastern and Southern Africa. Glob. Food Sec. 2018, 17, 213–220. [Google Scholar] [CrossRef]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Lu, Y.; Chadwick, D.; Norse, D.; Powlson, D.; Shi, W. Sustainable intensification of China’s agriculture: The key role of nutrient management and climate change mitigation and adaptation. Agric. Ecosyst. Environ. 2015, 209, 1–4. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Chen, Q.; Peng, S.; Wang, W.; Nie, L. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agron. Sustain. Dev. 2016, 36, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathi, T.; Vanitha, K.; Lakshamanakumar, P.; Kalalyarasi, D. Aerobic rice-mitigating water stress for the future climate change. Int. J. Agr. Plant Prod. 2012, 3, 241–254. [Google Scholar]
- Elliott, J.; Deryng, D.; Muller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Florke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- Birkenholtz, T. Assessing India’s drip-irrigation boom: Efficiency, climate change and groundwater policy. Water Int. 2017, 42, 663–677. [Google Scholar] [CrossRef]
- Zou, X.; Li, Y.; Cremades, R.; Gao, Q.; Wan, Y.; Qin, X. Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China. Agric. Water Manag. 2013, 129, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, B.; Ladha, J.K.; Bains, J.S.; Gupta, R.K.; Singh, J.; Balasubramaniam, V. On-farm evaluation of leaf color chart for need-based nitrogen management in irrigated transplanted rice in northwestern India. Nutr. Cycl. Agroecosyst. 2007, 78, 167–176. [Google Scholar] [CrossRef]
- Bhatia, A.; Pathal, H.; Jain, N.; Singh, P.K.; Tomer, R. Greenhouse gas mitigation in rice-wheat system with leaf color chart-based urea application. Environ. Monit. Assess. 2012, 184, 3095–3107. [Google Scholar] [CrossRef]
- Pal, B.D.; Kapoor, S.; Saroj, S.; Jat, M.L.; Kumar, Y.; Anantha, K.H. Impact of Laser Land Leveling on Food Production and Farmers’ Income: Evidence from Drought Prone Semi-Arid Tropics in India; IFPRI discussion paper 01960; IFPRI: Washington, DC, USA, 2020. [Google Scholar]
- Atlin, G.N.; Cairns, J.E.; Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Sec. 2017, 12, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chhogyell, N.; Pradhan, N.; Ghimiray, M.; Bajgai, Y. Evaluation of short duration rice (Oryza sativa) varieties as a strategy to cope with climate change. Proc. Bhutan Ecol. Soc. 2016, 1, 91–103. [Google Scholar]
- Gregorio, G.B.; Islam, M.R.; Vergara, G.V.; Thirumeni, S. Recent advances in rice science to design salinity and other abiotic stress tolerant rice varieties. SABRAO J. Breed. Genet. 2013, 45, 31–41. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Brainmoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Zougmore, R.; Jalloh, A.; Tioro, A. Climate-smart soil water and nutrient management options in semiarid West Africa: A review of evidence and analysis of stone bunds and zai techniques. Agric. Food Sec. 2014, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability 2018, 10, 2101. [Google Scholar] [CrossRef] [Green Version]
- Taneja, G.; Pal, B.D.; Joshi, P.K.; Aggarwal, P.K.; Tyagi, N.K. Farmers’ preferences for climate-smart agriculture-an assessment in the Indo-Gangetic plain. In Climate Smart Agriculture in South Asia; Pal, B., Kishore, A., Joshi, P., Tyagi, N., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef] [Green Version]
- Tol, R.S.J. On the uncertainty about the total economic impact of climate change. Environ. Res. Econ. 2012, 53, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Costinot, A.; Donaldson, D.; Smith, C. Evolving comparative advantage and the impact of climate change in agricultural markets: Evidence from 1.7 million fields around the world. J. Pol. Econ. 2016, 124, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Ciscar, J.C.; Iglesias, A.; Feyen, L.; Szabo, L.; Regemorter, D.V.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef] [Green Version]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, 9837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pampolino, M.F.; Manguiat, I.J.; Ramanathan, S.; Gines, H.C.; Tan, P.S.; Chi, T.T.N.; Rajendran, R.; Buresh, R.J. Environmental impact and economic benfits of site-specific nutrient management (SSNM) in irrigated rice systems. Agric. Syst. 2007, 93, 1–24. [Google Scholar] [CrossRef]
- Wagan, S.A.; Memon, Q.U.A.; Wagan, T.A.; Memon, I.H.; Wagan, A. Economic analysis of laser land leveling technology water use efficiency and crop productivity of wheat crop in Sindh, Pakistan. J. Environ. Earth Sci. 2015, 5, 21–25. [Google Scholar]
- Latif, A.; Shakir, A.S.; Rashid, M.U. Appraisal of economic impact of zero tillage, laser land levelling and bed-furrow intervention in Punjab, Pakistan. Pak. J. Eng. Appl. Sci. 2013, 13, 65–81. [Google Scholar]
- Ogada, M.J.; Rao, E.J.O.; Radeny, M.; Recha, J.W.; Solomon, D. Cllimate-smart agriculture, household income and asset accumulation among smallholder farmers in Nyando basin of Kenya. World Dev. Perspect. 2020. [Google Scholar] [CrossRef]
- Birthal, P.S.; Nigam, A.N.; Narayanan, A.V.; Kareem, K.A. Potential economic benefits from adoption of improved drought-tolerant groundnut in India. Agric. Econ. Res. Rev. 2012, 25, 1–14. [Google Scholar]
- Tripathi, R.S.; Raju, R.; Thimmappa, K. Impacts of zero tillage on economics of wheat production in Haryana. Agric. Econ. Res. Rev. 2013, 26, 101–108. [Google Scholar]
- Aryal, J.P.; Mehrotra, M.B.; Jat, M.L.; Sidhu, H.S. Impacts of laser land leveling in rice-wheat systems of the north-western indo-gangetic plains of India. Food Sec. 2015. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Jat, M.L.; Bishnoi, J.K. On-farm economic and environmental impact of zero-tillage wheat: A case of north-west India. Expl. Agric. 2015, 51, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Shukla, A.K.; Singh, M.P.; Majumdar, K.; Mishra, R.P.; Rani, M.; Singh, S.K. Effect of site-specific nutrient management on yield, profit and apparent nutrient balance under pre-dominant cropping systems of Upper Gangetic Plains. Indian J. Agric. Sci. 2015, 85, 335–343. [Google Scholar]
- Khatri-Chhetri, A.; Aryal, J.P.; Sapkota, T.B.; Khurana, R. Economic benefits of climate-smart agricultural practices to smallholder farmers in the Indo-Gangetic Plains of India. Curr. Sci. 2016, 110, 1251–1256. [Google Scholar]
- Mishra, A.K.; Khanal, A.R.; Pede, V. Economic and resource conservation perspectives of direct seeded rice planting methods: Evidence from India. In Proceedings of the Agricultural and Applied Economics Association’s 2017 AAEA Annual Meeting, Chicago, IL, USA, 30 July–2 August 2016. [Google Scholar]
- Narayanamoorthy, A.; Devika, N. Economic and resource impacts of drip method of irrigation on okra cultivation: An analysis of field survey data. J. Land Rural Stud. 2017, 6, 15–33. [Google Scholar] [CrossRef]
- Bhullar, M.S.; Singh, S.; Kumar, S.; Gill, G. Agronomic and economic impacts of direct seeded rice in Punjab. Agric. Res. J. 2018, 55, 236–242. [Google Scholar] [CrossRef]
- Narayanamoorthy, A.; Bhattarai, M.; Joshi, P. An assessment of the economic impact of drip irrigation in vegetable production in India. Agric. Econ. Res. Rev. 2018, 31, 105–112. [Google Scholar] [CrossRef] [Green Version]
Crops | Yield Variation | Cause | Model Used | Location | Source |
---|---|---|---|---|---|
Corn, soybean, cotton | Yield increase up to 29–32 °C −30–46% by 2100 −63–82% by 2100 | Slowest warming scenario Rapid warming scenario | Hadley III model | United States of America | [73] |
Cotton, sunflower, wheat | −2–9% by 2050 | Medium-high and low GHG emissions | DAYCENT | California’s Central Valley | [74] |
Wheat | −6% | Each degree Celsius increase in world’s mean temperature | Global grid-based, local point-based, statistical regression and field warming experiments | Multiple sites of the world | [75] |
Rice | −3.5% | ||||
Maize | −7.4% | ||||
Soybean | −3.1% by 2100 | ||||
Rainfed corn | −23–34% by 2055 | Increasing temperature and precipitation variability | Probability-based approach | Central Illinois | [76] |
Wheat | −2.1% | Increasing annual temperature | Multimethod analysis with statistical regression | Eastern and northern Europe | [77] |
Barley | −9.1% | ||||
Maize | −24.5% | ||||
Maize | −5.8% | Sub-Saharan Africa | |||
Sugarcane | −3.9% | ||||
Drought-tolerant sorghum Cassava | +0.7% +1.7% | Sub-Saharan Africa | |||
Wheat | −9% | Oceania | |||
Rice | −3.7% | 1 °C increase in mean growing season temperature | Regression, Kendall-tau statistic, Pearson correlation | China | [78] |
Wheat | −10.2% | ||||
Maize Wheat | −10–22% −5–13% if occurred later in season −5–17% and −2–18% if occurred early in season | Increased frequencies of extreme weather events and warming | SALUS crop model | Northern Midwest USA | [79] |
Sorghum | −2.2% | Increasing temperature | County-specific multiple linear regression model | Great Plains of USA | [80] |
Soybean | −0.5% | ||||
Maize | +1.6% |
Location | Crop | Climate-Smart Technology | Enhanced Efficiency | Incremental Economic Benefit | References |
---|---|---|---|---|---|
Vietnam | Rice | Site-specific nutrient management | Increased partial factor productivity of nitrogen | 34 US$/ha | [140] |
Philippines | 106 US$/ha | ||||
India | 168 US$/ha | ||||
Sindh, Pakistan | Wheat | Laser land leveling | Saving of 21% irrigation water and reduced irrigation time | INR 23,250/acre | [141] |
Punjab, Pakistan | Rice-wheat cropping system | Zero tillage | Higher water productivity, saving of irrigation water, and higher fertilizer use efficiency | - | [142] |
Bed furrows | |||||
Laser land leveling | |||||
Nyando basin of Kenya | Multiple crops and livestock | Stress-tolerant crop varieties | Increased household income leading to household asset accumulation and investment | Increased HH income by 83% | [143] |
Improved livestock breeds | Increased HH income by 76% | ||||
Semi-arid tropics of India | Groundnut | Drought-tolerant varieties | Increase in yield by 23%, lower variability in yield, increased share of risk benefits in total benefits | 17% reduction in variable cost | [144] |
Karnal, Haryana | Wheat | Zero tillage | Enhanced production by 1.88% and lower cultivation cost | Higher net income | [145] |
Northwestern Indo-Gangetic plains of India | Rice and wheat | Laser land leveling | Reduced irrigation time, increased yield, reduced electricity charges | US$ 143.5/ha/year | [146] |
North western India | Wheat | Zero tillage | Reduced cultivation cost, reduced GHGs emissions, and increased yield | US$ 97.5/ha | [147] |
Upper Gangetic plains | Wheat | Site-specific nutrient management | Increased yield by 29% over farmers fertilizer practices (FFP) | INR 68,980/ha over FFP | [148] |
Indo-Gangetic plains of India | Rice–Wheat cropping system | Improved crop varieties | Increased net returns | INR 15,712/ha/yr | [149] |
Laser land leveling | INR 8119/ha/yr | ||||
Zero-tillage | INR 6951/ha/yr | ||||
India | Rice | Direct-seeded rice | Reduced irrigation and preparation costs | Increase HH income by 16% | [150] |
Tamilnadu, India | Okra | Drip irrigation | Saving of irrigation water and electricity charges, reduced cultivation cost | INR 72,711/acre | [151] |
Punjab, India | DSR–Wheat | Direct-seeded rice | Saving of irrigation, lesser labor requirement | INR 5050–INR 8100/ha over puddled transplanted rice (PTR)–Wheat | [152] |
India | Eggplant | Drip irrigation | Reduced water, electricity and fertilizer use, and increased returns | 54% higher net returns | [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. https://doi.org/10.3390/su13031318
Malhi GS, Kaur M, Kaushik P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability. 2021; 13(3):1318. https://doi.org/10.3390/su13031318
Chicago/Turabian StyleMalhi, Gurdeep Singh, Manpreet Kaur, and Prashant Kaushik. 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review" Sustainability 13, no. 3: 1318. https://doi.org/10.3390/su13031318
APA StyleMalhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318