The Impact of Rhodiola Rosea Extract on Strength Performance in Alternative Bench-Press and Bench-Pull Exercises Under Resting and Mental Fatigue Conditions: A Randomized, Triple-Blinded, Placebo-Controlled, Crossover Trial
<p>Descriptive illustration of weekly experimental procedures. MOT: Multiple Object Tracking.</p> "> Figure 2
<p>The four stages of the Multiple Object Tracking task (from left to right): the presentation stage, where three out of the eight balls were briefly highlighted in green for 2 s; the movement stage, during which all the balls returned to black and moved for 10 s, colliding and bouncing off each other; the identification stage, where the balls were frozen in place and numbered, and participants were asked to select the three balls that had originally been highlighted; and finally, the feedback stage, where participants were informed of the correct target balls.</p> "> Figure 3
<p>CONSORT flow diagram showing participant flow through the study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Participants
2.3. Procedures
2.3.1. Supplementation
2.3.2. RM Load Assessment
2.3.3. Cognitively Demanding and Control Tasks
2.3.4. MOT Test
2.3.5. Strength Training
2.4. Statistical Analysis
3. Results
3.1. Mental Fatigue
3.2. Visuo-Cognitive Processing
3.3. Strength Performance
3.4. Perceived Exertion
4. Discussion
4.1. Mental Fatigue
4.2. Visuo-Cognitive Processing
4.3. Strength Performance
4.4. Perceived Exertion
4.5. Limitations and Directions for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1RM | 1-repetition maximum. |
ANOVA | Analysis of variance. |
G-RPE | General ratings of perceived exertion. |
L-RPE | Local ratings of perceived exertion. |
MOT | Multiple Object Tracking. |
MV | Mean velocity. |
MVfastest | Mean velocity of the fastest repetition. |
Nrep | Number of repetitions completed. |
OMNI-RES | OMNI-Resistance Exercise Scale. |
RPEs | Ratings of perceived exertion. |
RR | Rhodiola Rosea. |
References
- Alix-Fages, C.; Jiménez-Martínez, P.; de Oliveira, D.S.; Möck, S.; Balsalobre-Fernández, C.; Del Vecchio, A. Mental Fatigue Impairs Physical Performance but Not the Neural Drive to the Muscle: A Preliminary Analysis. Eur. J. Appl. Physiol. 2023, 123, 1671–1684. [Google Scholar] [CrossRef] [PubMed]
- Okogbaa, O.G.; Shell, R.L.; Filipusic, D. On the Investigation of the Neurophysiological Correlates of Knowledge Worker Mental Fatigue Using the EEG Signal. Appl. Ergon. 1994, 25, 355–365. [Google Scholar] [CrossRef]
- Boksem, M.A.S.; Tops, M. Mental Fatigue: Costs and Benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Hockey, G.R.J.; Earle, F. Control over the Scheduling of Simulated Office Work Reduces the Impact of Workload on Mental Fatigue and Task Performance. J. Exp. Psychol. Appl. 2006, 12, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Schmidt, E.A.; Kincses, W.E.; Fritzsche, M.; Bruns, A.; Aufmuth, C.; Bogdan, M.; Rosenstiel, W.; Schrauf, M. EEG Alpha Spindle Measures as Indicators of Driver Fatigue under Real Traffic Conditions. Clin. Neurophysiol. 2011, 122, 1168–1178. [Google Scholar] [CrossRef]
- Sievertsen, H.H.; Gino, F.; Piovesan, M. Cognitive Fatigue Influences Students’ Performance on Standardized Tests. Proc. Natl. Acad. Sci. USA 2016, 113, 2621–2624. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental Fatigue Impairs Physical Performance in Humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Bray, S.R.; Martin Ginis, K.A.; Hicks, A.L.; Woodgate, J. Effects of Self-regulatory Strength Depletion on Muscular Performance and EMG Activation. Psychophysiology 2008, 45, 337–343. [Google Scholar] [CrossRef]
- Proost, M.; Habay, J.; De Wachter, J.; De Pauw, K.; Rattray, B.; Meeusen, R.; Roelands, B.; Van Cutsem, J. How to Tackle Mental Fatigue: A Systematic Review of Potential Countermeasures and Their Underlying Mechanisms. Sports Med. 2022, 52, 2129–2158. [Google Scholar] [CrossRef]
- Barnish, M.; Sheikh, M.; Scholey, A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients 2023, 15, 2154. [Google Scholar] [CrossRef]
- Walker, T.B.; Robergs, R.A. Does Rhodiola Rosea Possess Ergogenic Properties? Int. J. Sport. Nutr. Exerc. Metab. 2006, 16, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Langley, H.N.; Roberson, C.C.; Rogers, R.R.; Ballmann, C.G. Effects of Short-Term Golden Root Extract (Rhodiola rosea) Supplementation on Resistance Exercise Performance. Int. J. Environ. Res. Public Health 2021, 18, 6953. [Google Scholar] [CrossRef]
- Arnsten, A.F.T. Stress Signalling Pathways That Impair Prefrontal Cortex Structure and Function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
- Alix-Fages, C.; Grgic, J.; Jiménez-Martínez, P.; Baz-Valle, E.; Balsalobre-Fernández, C. Effects of Mental Fatigue on Strength Endurance: A Systematic Review and Meta-Analysis. Mot. Control 2023, 27, 442–461. [Google Scholar] [CrossRef]
- Zouhal, H.; Jacob, C.; Delamarche, P.; Gratas-Delamarche, A. Catecholamines and the Effects of Exercise, Training and Gender. Sports Med. 2008, 38, 401–423. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Serratos, H.; Hill, L.; Valle-Aguilera, R. Effects of Catecholamines and Cyclic Amp on Excitation--contraction Coupling in Isolated Skeletal Muscle Fibres of the Frog. J. Physiol. 1981, 315, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Cairns, S.P.; Borrani, F. Β-Adrenergic Modulation of Skeletal Muscle Contraction: Key Role of Excitation–Contraction Coupling. J. Physiol. 2015, 593, 4713–4727. [Google Scholar] [CrossRef]
- Hostrup, M.; Kalsen, A.; Ørtenblad, N.; Juel, C.; Mørch, K.; Rzeppa, S.; Karlsson, S.; Backer, V.; Bangsbo, J. Β-Adrenergic Stimulation Enhances Ca2+ Release and Contractile Properties of Skeletal Muscles, and Counteracts Exercise-induced Reductions in Na+–K+-ATPase Vmax in Trained Men. J. Physiol. 2014, 592, 5445–5459. [Google Scholar] [CrossRef]
- Alix-Fages, C.; González-Cano, H.; Baz-Valle, E.; Balsalobre-Fernández, C. Effects of Mental Fatigue Induced by Stroop Task and by Social Media Use on Resistance Training Performance, Movement Velocity, Perceived Exertion, and Repetitions in Reserve: A Randomized and Double-Blind Crossover Trial. Mot. Control 2023, 27, 645–659. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional Use, Chemical Composition, Pharmacology and Clinical Efficacy. Phytomedicine 2010, 17, 481–493. [Google Scholar] [CrossRef]
- Spasov, A.A.; Wikman, G.K.; Mandrikov, V.B.; Mironova, I.A.; Neumoin, V.V. A Double-Blind, Placebo-Controlled Pilot Study of the Stimulating and Adaptogenic Effect of Rhodiola rosea SHR-5 Extract on the Fatigue of Students Caused by Stress during an Examination Period with a Repeated Low-Dose Regimen. Phytomedicine 2000, 7, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Darbinyan, V.; Kteyan, A.; Panossian, A.; Gabrielian, E.; Wikman, G.; Wagner, H. Rhodiola rosea in Stress Induced Fatigue—A Double Blind Cross-over Study of a Standardized Extract SHR-5 with a Repeated Low-Dose Regimen on the Mental Performance of Healthy Physicians during Night Duty. Phytomedicine 2000, 7, 365–371. [Google Scholar] [CrossRef]
- Shevtsov, V.A.; Zholus, B.I.; Shervarly, V.I.; Vol’skij, V.B.; Korovin, Y.P.; Khristich, M.P.; Roslyakova, N.A.; Wikman, G. A Randomized Trial of Two Different Doses of a SHR-5 Rhodiola rosea Extract versus Placebo and Control of Capacity for Mental Work. Phytomedicine 2003, 10, 95–105. [Google Scholar] [CrossRef]
- De Bock, K.; Eijnde, B.O.; Ramaekers, M.; Hespel, P. Acute Rhodiola Rosea Intake Can Improve Endurance Exercise Performance. Int. J. Sport. Nutr. Exerc. Metab. 2004, 14, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Noreen, E.E.; Buckley, J.G.; Lewis, S.L.; Brandauer, J.; Stuempfle, K.J. The Effects of an Acute Dose of Rhodiola rosea on Endurance Exercise Performance. J. Strength Cond. Res. 2013, 27, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Tranchita, E.; Duranti, G.; Ciminelli, E.; Quaranta, F.; Ceci, R.; Cerulli, C.; Borrione, P.; Sabatini, S. Effects of Chronic Rhodiola Rosea Supplementation on Sport Performance and Antioxidant Capacity in Trained Male: Preliminary Results. J. Sports Med. Phys. Fit. 2010, 50, 57–63. [Google Scholar]
- Earnest, C.P.; Morss, G.M.; Wyatt, F.; Jordan, A.N.; Colson, S.; Church, T.S.; Fitzgerald, Y.; Autrey, L.; Jurca, R.; Lucia, A. Effects of a Commercial Herbal-Based Formula on Exercise Performance in Cyclists. Med. Sci. Sports Exerc. 2004, 36, 504–509. [Google Scholar] [CrossRef]
- Walker, T.B.; Altobelli, S.A.; Caprihan, A.; Robergs, R.A. Failure of Rhodiola rosea to Alter Skeletal Muscle Phosphate Kinetics in Trained Men. Metabolism 2007, 56, 1111–1117. [Google Scholar] [CrossRef]
- Ishaque, S.; Shamseer, L.; Bukutu, C.; Vohra, S. Rhodiola rosea for Physical and Mental Fatigue: A Systematic Review. BMC Complement. Altern. Med. 2012, 12, 70. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Gregory Haff, G. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef]
- Miras-Moreno, S.; García-Ramos, A.; Jukic, I.; Pérez-Castilla, A. Two-Point Method Applied in Field Conditions: A Feasible Approach to Assess the Load-Velocity Relationship Variables During the Bench Pull Exercise. J. Strength Cond. Res. 2023, 37, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, C.M.; MacDonald, P.A. Interdimensional Interference in the Stroop Effect: Uncovering the Cognitive and Neural Anatomy of Attention. Trends Cogn. Sci. 2000, 4, 383–391. [Google Scholar] [CrossRef]
- Smith, M.R.; Coutts, A.J.; Merlini, M.; Deprez, D.; Lenoir, M.; Marcora, S.M. Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance. Med. Sci. Sports Exerc. 2016, 48, 267–276. [Google Scholar] [CrossRef]
- Vera, J.; Redondo, B.; Molina, R.; Jiménez, R.; Dalton, K. Relationship between Dynamic Visual Acuity and Multiple Object Tracking Performance. Perception 2022, 51, 539–548. [Google Scholar] [CrossRef]
- Fehd, H.M.; Seiffert, A.E. Looking at the Center of the Targets Helps Multiple Object Tracking. J. Vis. 2010, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fehd, H.M.; Seiffert, A.E. Eye Movements during Multiple Object Tracking: Where Do Participants Look? Cognition 2008, 108, 201–209. [Google Scholar] [CrossRef]
- Levitt, H. Transformed Up-down Methods in Psychoacoustics. J. Acoust. Soc. Am. 1971, 49 (Suppl. 2), 467. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Penna, E.M.; Filho, E.; Wanner, S.P.; Campos, B.T.; Quinan, G.R.; Mendes, T.T.; Smith, M.R.; Prado, L.S. Mental Fatigue Impairs Physical Performance in Young Swimmers. Pediatr. Exerc. Sci. 2018, 30, 208–215. [Google Scholar] [CrossRef]
- de Queiros, V.S.; Dantas, M.; Fortes, L.d.S.; da Silva, L.F.; da Silva, G.M.; Dantas, P.M.S.; Cabral, B.G.d.A.T. Mental Fatigue Reduces Training Volume in Resistance Exercise: A Cross-Over and Randomized Study. Percept. Mot. Ski. 2021, 128, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Cropley, M.; Banks, A.P.; Boyle, J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother. Res. 2015, 29, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
Variables | Male (n = 11) | Female (n = 7) |
---|---|---|
Age (years) | 22.8 ± 2.1 | 21.9 ± 4.1 |
Body mass (kg) | 76.9 ± 4.5 | 62.1 ± 16.6 |
Height (cm) | 176.8 ± 6.8 | 163.1 ± 9.7 |
Bench press 1RM/Body mass | 1.14 ± 0.17 | 0.72 ± 0.16 |
Bench pull 1RM/Body mass | 1.13 ± 0.19 | 0.85 ± 0.16 |
Variable | Time Interval | Supplement Condition | ES | |
---|---|---|---|---|
RR | Placebo | |||
Correct Answers (%) | 0–5 min | 97.0 ± 2.2 | 96.8 ± 4.4 | 0.07 (−0.47, 0.62) |
5–10 min | 96.4 ± 2.1 | 96.3 ± 3.3 | 0.00 (−0.41, 0.42) | |
10–15 min | 96.7 ± 1.8 | 95.7 ± 4.5 | 0.29 (−0.25, 0.85) | |
15–20 min | 95.8 ± 3.1 | 95.6 ± 3.6 | 0.06 (−0.16, 0.29) | |
20–25 min | 96.5 ± 2.1 | 96.0 ± 3.0 | 0.17 (−0.22, 0.58) | |
25–30 min | 95.6 ± 2.9 | 95.7 ± 2.9 | −0.04 (−0.35, 0.27) | |
ANOVA | ||||
Suppl: F = 0.5; p = 0.508 | Time: F = 3.8; p = 0.004 | Suppl × Time: F = 0.6; p = 0.736 | ||
Reaction Time (s) | 0–5 min | 0.86 ± 0.15 | 0.93 ± 0.25 | −0.33 (−0.86, 0.17) |
5–10 min | 0.84 ± 0.14 | 0.92 ± 0.22 | −0.42 (−0.96, 0.08) | |
10–15 min | 0.90 ± 0.30 | 0.93 ± 0.23 | −0.11 (−0.63, 0.40) | |
15–20 min | 0.87 ± 0.22 | 0.96 ± 0.26 | −0.34 (−0.77, 0.06) | |
20–25 min | 0.85 ± 0.17 | 0.91 ± 0.24 | −0.28 (−0.73, 0.16) | |
25–30 min | 0.88 ± 0.20 | 0.88 ± 0.21 | −0.02 (−0.34, 0.30) | |
ANOVA | ||||
Suppl: F = 2.3; p = 0.146 | Time: F = 0.6; p = 0.533 | Suppl × Time: F = 0.7; p = 0.305 |
Mental Task Condition | Time | Supplement Condition | ES | |
---|---|---|---|---|
RR | Placebo | |||
Control video | Pre | 16.2 ± 3.2 | 16.1 ± 3.2 | 0.01 (−0.62, 0.63) |
Post | 17.2 ± 3.6 | 16.1 ± 2.0 | 0.38 (−0.21, 1.00) | |
Stroop | Pre | 16.7 ± 3.0 | 15.6 ± 2.6 | 0.37 (−0.13, 0.90) |
Post | 16.8 ± 3.2 | 16.3 ± 2.6 | 0.16 (−0.34, 0.67) | |
ANOVA | ||||
Main effect | Interaction | |||
Suppl: F = 1.7; p = 0.212 Task: F < 0.1; p = 0.892 Time: F = 2.6; p = 0.124 | Suppl × Task: F < 0.1; p = 0.794 Suppl × Time: F = 0.2; p = 0.651 Task × Time: F < 0.1; p = 0.766 Suppl × Task × Time: F = 0.9; p = 0.346 |
Exercise | Variable | Mental Task | Set | Supplement Condition | ES | |
---|---|---|---|---|---|---|
RR | Placebo | |||||
Bench press | Nrep | Control video | 1 | 15.5 ± 3.3 | 14.3 ± 2.5 * | 0.39 (0.03, 0.78) |
2 | 12.2 ± 2.5 | 10.9 ± 2.3 * | 0.50 (0.12, 0.91) | |||
3 | 9.5 ± 2.4 | 9.3 ± 1.3 | 0.08 (−0.42, 0.59) | |||
4 | 8.4 ± 2.7 | 8.4 ± 2.0 | 0.00 (−0.27, 0.27) | |||
Stroop | 1 | 13.3 ± 2.9 | 13.6 ± 2.7 | −0.10 (−0.48, 0.28) | ||
2 | 11.3 ± 2.3 | 11.6 ± 2.1 | −0.12 (−0.50, 0.26) | |||
3 | 9.7 ± 2.3 | 9.2 ± 2.2 | 0.19 (−0.26, 0.65) | |||
4 | 8.5 ± 2.3 | 8.1 ± 2.5 | 0.16 (−0.17, 0.49) | |||
ANOVA | ||||||
Main effect | Interaction | |||||
Suppl: F = 2.0; p = 0.171 Task: F = 4.7; p = 0.044 Set: F = 91.0; p < 0.001 | Suppl × Task: F = 2.4; p = 0.142 Suppl × Set: F = 0.2; p = 0.863 Task × Set: F = 7.6; p = 0.027 Suppl × Task × Set: F = 4.5; p = 0.007 | |||||
Bench press | MVfastest (m·s−1) | Control video | 1 | 0.65 ± 0.08 | 0.63 ± 0.07 | 0.28 (−0.06, 0.63) |
2 | 0.59 ± 0.05 | 0.60 ± 0.06 | −0.08 (−0.47, 0.31) | |||
3 | 0.57 ± 0.06 | 0.56 ± 0.07 | 0.17 (−0.19, 0.53) | |||
4 | 0.54 ± 0.04 | 0.54 ± 0.05 | −0.14 (−0.42, 0.13) | |||
Stroop | 1 | 0.62 ± 0.06 | 0.63 ± 0.06 | −0.10 (−0.58, 0.37) | ||
2 | 0.59 ± 0.06 | 0.58 ± 0.04 | 0.15 (−0.43, 0.74) | |||
3 | 0.54 ± 0.05 | 0.56 ± 0.05 | −0.28 (−0.74, 0.15) | |||
4 | 0.53 ± 0.06 | 0.52 ± 0.05 | 0.17 (−0.20, 0.55) | |||
ANOVA | ||||||
Main effect | Interaction | |||||
Suppl: F = 0.1; p = 0.734 Task: F = 3.1; p = 0.094 Set: F = 86.2; p < 0.001 | Suppl × Task: F = 0.3; p = 0.616 Suppl × Set: F = 0.4; p = 0.723 Task × Set: F = 0.1; p = 0.930 Suppl × Task × Set: F = 2.8; p = 0.091 | |||||
Bench pull | Nrep | Control video | 1 | 13.1 ± 4.5 | 12.6 ± 4.5 | 0.11 (−0.16, 0.38) |
2 | 10.6 ± 3.9 | 10.6 ± 3.4 | −0.01 (−0.24, 0.21) | |||
3 | 10.0 ± 2.5 | 9.5 ± 3.4 | 0.16 (−0.21, 0.54) | |||
4 | 9.1 ± 2.6 | 9.3 ± 3.8 | −0.08 (−0.57, 0.40) | |||
Stroop | 1 | 12.9 ± 2.7 | 13.0 ± 5.1 | −0.03 (−0.52, 0.47) | ||
2 | 11.7 ± 3.7 | 11.4 ± 5.1 | 0.07 (−0.31, 0.45) | |||
3 | 10.6 ± 2.4 | 10.4 ± 3.8 | 0.07 (−0.42, 0.56) | |||
4 | 9.1 ± 2.3 | 9.0 ± 3.4 | 0.04 (−0.40, 0.47) | |||
ANOVA | ||||||
Main effect | Interaction | |||||
Suppl: F < 0.1; p = 0.763 Task: F = 1.2; p = 0.293 Set: F = 42.2; p < 0.001 | Suppl × Task: F < 0.1; p = 0.965 Suppl × Set: F = 0.2; p = 0.869 Task × Set: F = 2.1; p = 0.116 Suppl × Task × Set: F = 0.5; p = 0.694 | |||||
Bench pull | MVfastest (m·s−1) | Control video | 1 | 0.78 ± 0.04 | 0.76 ± 0.05 * | 0.51 (0.00, 1.05) |
2 | 0.77 ± 0.06 | 0.75 ± 0.05 | 0.37 (−0.04, 0.81) | |||
3 | 0.76 ± 0.05 | 0.73 ± 0.04 * | 0.61 (0.07, 1.19) | |||
4 | 0.74 ± 0.05 | 0.73 ± 0.06 | 0.17 (−0.16, 0.53) | |||
Stroop | 1 | 0.80 ± 0.07 | 0.79 ± 0.07 | 0.05 (−0.52, 0.61) | ||
2 | 0.77 ± 0.06 | 0.76 ± 0.06 | 0.22 (−0.46, 0.91) | |||
3 | 0.74 ± 0.04 | 0.76 ± 0.05 | −0.41 (−1.08, 0.24) | |||
4 | 0.72 ± 0.05 | 0.73 ± 0.04 | −0.27 (−0.97, 0.42) | |||
ANOVA | ||||||
Main effect | Interaction | |||||
Suppl: F = 1.2; p = 0.281 Task: F = 1.0; p = 0.326 Set: F = 31.7; p < 0.001 | Suppl × Task: F = 2.1; p = 0.167 Suppl × Set: F = 1.1; p = 0.349 Task × Set: F = 4.0; p = 0.013 Suppl × Task × Set: F = 1.4; p = 0.262 |
Variable | Mental Task Condition | Supplement Condition | p | |
---|---|---|---|---|
RR | Placebo | |||
G-RPE | Control video | 6.8 ± 1.0 | 6.9 ± 1.5 | 0.630 |
Stroop | 6.7 ± 1.6 | 6.6 ± 1.6 | 0.935 | |
L-RPE | Control video | 7.4 ± 1.0 | 7.3 ± 1.5 | 0.755 |
Stroop | 7.1 ± 1.6 | 6.8 ± 1.2 | 0.598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Frutos, D.; Leban, Ž.; Li, Z.; Zhang, X.; Lara, P.M.; Alix-Fages, C.; Jiménez-Martínez, P.; Zebboudji, N.; Caillet, A.; Redondo, B.; et al. The Impact of Rhodiola Rosea Extract on Strength Performance in Alternative Bench-Press and Bench-Pull Exercises Under Resting and Mental Fatigue Conditions: A Randomized, Triple-Blinded, Placebo-Controlled, Crossover Trial. Nutrients 2025, 17, 940. https://doi.org/10.3390/nu17060940
Marcos-Frutos D, Leban Ž, Li Z, Zhang X, Lara PM, Alix-Fages C, Jiménez-Martínez P, Zebboudji N, Caillet A, Redondo B, et al. The Impact of Rhodiola Rosea Extract on Strength Performance in Alternative Bench-Press and Bench-Pull Exercises Under Resting and Mental Fatigue Conditions: A Randomized, Triple-Blinded, Placebo-Controlled, Crossover Trial. Nutrients. 2025; 17(6):940. https://doi.org/10.3390/nu17060940
Chicago/Turabian StyleMarcos-Frutos, Daniel, Žiga Leban, Zhaoqian Li, Xing Zhang, Paula M. Lara, Carlos Alix-Fages, Pablo Jiménez-Martínez, Nadia Zebboudji, Annabelle Caillet, Beatriz Redondo, and et al. 2025. "The Impact of Rhodiola Rosea Extract on Strength Performance in Alternative Bench-Press and Bench-Pull Exercises Under Resting and Mental Fatigue Conditions: A Randomized, Triple-Blinded, Placebo-Controlled, Crossover Trial" Nutrients 17, no. 6: 940. https://doi.org/10.3390/nu17060940
APA StyleMarcos-Frutos, D., Leban, Ž., Li, Z., Zhang, X., Lara, P. M., Alix-Fages, C., Jiménez-Martínez, P., Zebboudji, N., Caillet, A., Redondo, B., Vera, J., Janicijevic, D., & García-Ramos, A. (2025). The Impact of Rhodiola Rosea Extract on Strength Performance in Alternative Bench-Press and Bench-Pull Exercises Under Resting and Mental Fatigue Conditions: A Randomized, Triple-Blinded, Placebo-Controlled, Crossover Trial. Nutrients, 17(6), 940. https://doi.org/10.3390/nu17060940