Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise
<p>Increase in urine mango phenolic metabolites after 2 weeks of mango ingestion versus water-only (control). The data in this figure and all other figures are expressed as mean ± SE. SE was calculated as the standard deviation divided by the square root of the sample size.</p> "> Figure 2
<p>Plasma glucose data in the mango and water-only trials (interaction effect, <span class="html-italic">p</span> = 0.543).</p> "> Figure 3
<p>Changes in plasma concentrations for EPA, DHA, and ARA.</p> "> Figure 4
<p>Changes in plasma oxylipin groups: sum of all 49 oxylipins with significant time effects; eight oxylipins generated from arachidonic acid and cytochrome P-450 (ARA-CYP); four abundant oxylipins generated from linoleic acid with CYP and LOX (9,10-DiHOME, 12,13-DiHOME, 9-HODE, 13-HODE) (LA-DiHOMES + HODES). See <a href="#app1-nutrients-16-00036" class="html-app">Table S1</a> for additional information.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Research Design
2.2.1. Pre-Study Baseline Testing
2.2.2. Pre-Supplementation Lab Visits
2.2.3. Cycling Sessions
2.3. Sample Analysis
2.3.1. Plasma Oxylipins
2.3.2. Urine Mango Metabolites
2.3.3. Plasma Glucose
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pilolla, K.D.; Armendariz, J.; Burrus, B.M.; Baston, D.S.; McCarthy, K.A.; Bloedon, T.K. Effects of wild blueberries on fat oxidation rates in aerobically trained males. Nutrients 2023, 15, 1339. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M.; Fukuoka, Y.; Koyama, K.; Oliver, S.J. Five days of tart cherry supplementation improves exercise performance in normobaric hypoxia. Nutrients 2023, 15, 388. [Google Scholar] [CrossRef]
- Naderi, A.; Gobbi, N.; Ali, A.; Berjisian, E.; Hamidvand, A.; Forbes, S.C.; Koozehchian, M.S.; Karayigit, R.; Saunders, B. Carbohydrates and endurance exercise: A narrative review of a food first approach. Nutrients 2023, 15, 1367. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Gillitt, N.D.; Sha, W.; Esposito, D.; Ramamoorthy, S. Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS ONE 2018, 13, e0194843. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Gillitt, N.D.; Chen, G.-Y.; Zhang, Q.; Sakaguchi, C.A.; Stephan, E.H. Carbohydrate intake attenuates post-exercise plasma levels of cytochrome P450-generated oxylipins. PLoS ONE 2019, 14, e0213676. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.L.; Brindley, E.; Enright, K.; Highton, J.; Bott, R. The effects of an acute dose of New Zealand blackcurrant extract on 5-km running performance. Int. J. Sport Nutr. Exerc. Metab. 2023, 33, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Omar, A.M.; Kay, C.D.; Kasote, D.M.; Sakaguchi, C.A.; Lkhagva, A.; Weldemariam, M.M.; Zhang, Q. Almond intake alters the acute plasma dihydroxy-octadecenoic acid (DiHOME) response to eccentric exercise. Front. Nutr. 2022, 9, 1042719. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.E.A.; Coelho, M.O.C.; Buxton, S.; Butcher, R.; Foran, D.; Rowland, D.; Gurton, W.; Macrae, H.; Jones, L.; Gapper, K.S.; et al. Consumption of New Zealand blackcurrant extract improves recovery from exercise-induced muscle damage in non-resistance trained men and women: A double-blind randomised trial. Nutrients 2021, 13, 2875. [Google Scholar] [CrossRef]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef]
- Caligiuri, S.P.B.; Parikh, M.; Stamenkovic, A.; Pierce, G.N.; Aukema, H.M. Dietary modulation of oxylipins in cardiovascular disease and aging. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H903–H918. [Google Scholar] [CrossRef]
- Ostermann, A.I.; Schebb, N.H. Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: A short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids. Food Funct. 2017, 8, 2355–2367. [Google Scholar] [CrossRef] [PubMed]
- Guijas, C.; Rodríguez, J.P.; Rubio, J.M.; Balboa, M.A.; Balsinde, J. Phospholipase A2 regulation of lipid droplet formation. Biochim. Biophys. Acta 2014, 1841, 1661–1671. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, A.M.; Balboa, M.A.; Balsinde, J. Selectivity of phospholipid hydrolysis by phospholipase A2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 772–783. [Google Scholar] [CrossRef]
- Shearer, G.C.; Walker, R.E. An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins Leukot. Essent. Fat. Acids 2018, 137, 26–38. [Google Scholar] [CrossRef] [PubMed]
- García-Flores, L.A.; Medina, S.; Gómez, C.; Wheelock, C.E.; Cejuela, R.; Martínez-Sanz, J.M.; Oger, C.; Galano, J.-M.; Durand, T.; Hernández-Sáez, Á.; et al. Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: A lipidomic approach using representative oxylipins in urine. Food Funct. 2018, 9, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Vella, L.; Markworth, J.F.; Farnfield, M.M.; Maddipati, K.R.; Russell, A.P.; Cameron-Smith, D. Intramuscular inflammatory and resolving lipid profile responses to an acute bout of resistance exercise in men. Physiol. Rep. 2019, 7, e14108. [Google Scholar] [CrossRef] [PubMed]
- Markworth, J.F.; Vella, L.; Lingard, B.S.; Tull, D.L.; Rupasinghe, T.W.; Sinclair, A.J.; Maddipati, K.R.; Cameron-Smith, D. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1281–R1296. [Google Scholar] [CrossRef] [PubMed]
- Markworth, J.F.; D’Souza, R.F.; Aasen, K.M.M.; Mitchell, S.M.; Durainayagam, B.R.; Sinclair, A.J.; Peake, J.M.; Egner, I.M.; Raastad, T.; Cameron-Smith, D.; et al. Arachidonic acid supplementation transiently augments the acute inflammatory response to resistance exercise in trained men. J. Appl. Physiol. (1985) 2018, 125, 271–286. [Google Scholar] [CrossRef]
- Rocic, P.; Schwartzman, M.L. 20-HETE in the Regulation of vascular and cardiac function. Pharmacol. Ther. 2018, 192, 74–87. [Google Scholar] [CrossRef]
- Waldman, M.; Peterson, S.J.; Arad, M.; Hochhauser, E. The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 2016, 125, 108–117. [Google Scholar] [CrossRef]
- Hoxha, M.; Zappacosta, B. CYP-derived eicosanoids: Implications for rheumatoid arthritis. Prostaglandins Other Lipid Mediat. 2020, 146, 106405. [Google Scholar] [CrossRef] [PubMed]
- Shoieb, S.M.; El-Sherbeni, A.A.; El-Kadi, A.O.S. Subterminal Hydroxyeicosatetraenoic Acids: Crucial Lipid Mediators in Normal Physiology and Disease States. Chem. Biol. Interact. 2019, 299, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, R.; Chen, G.; Hoopes, S.L.; Zeldin, D.C.; Wang, D.W. The role of cytochrome P450 epoxygenases, soluble epoxide hydrolase, and epoxyeicosatrienoic acids in metabolic diseases. Adv. Nutr. 2016, 7, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.R.B.; Fleming, I. Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins Other Lipid Mediat. 2020, 148, 106407. [Google Scholar] [CrossRef]
- Valdes, A.M.; Ravipati, S.; Pousinis, P.; Menni, C.; Mangino, M.; Abhishek, A.; Chapman, V.; Barrett, D.A.; Doherty, M. Omega-6 oxylipins generated by soluble epoxide hydrolase are associated with knee osteoarthritis. J. Lipid Res. 2018, 59, 1763–1770. [Google Scholar] [CrossRef]
- Morisseau, C.; Hammock, B.D. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 37–58. [Google Scholar] [CrossRef]
- Zhang, H.; Falck, J.R.; Roman, R.J.; Harder, D.R.; Koehler, R.C.; Yang, Z.-J. Upregulation of 20-HETE synthetic cytochrome P450 isoforms by oxygen-glucose deprivation in cortical neurons. Cell. Mol. Neurobiol. 2017, 37, 1279–1286. [Google Scholar] [CrossRef]
- Knudsen, J.G.; Bertholdt, L.; Gudiksen, A.; Gerbal-Chaloin, S.; Rasmussen, M.K. Skeletal muscle interleukin-6 regulates hepatic cytochrome P450 expression: Effects of 16-week high-fat diet and exercise. Toxicol. Sci. 2018, 162, 309–317. [Google Scholar] [CrossRef]
- Nieman, D.C.; Gillitt, N.D.; Chen, G.-Y.; Zhang, Q.; Sha, W.; Kay, C.D.; Chandra, P.; Kay, K.L.; Lila, M.A. Blueberry and/or banana consumption mitigate arachidonic, cytochrome P450 oxylipin generation during recovery from 75-Km cycling: A randomized trial. Front. Nutr. 2020, 7, 121. [Google Scholar] [CrossRef]
- Nieman, D.C.; Sakaguchi, C.A.; Omar, A.M.; Davis, K.L.; Shaffner, C.E.; Strauch, R.C.; Lila, M.A.; Zhang, Q. Blueberry intake elevates post-exercise anti-inflammatory oxylipins: A randomized trial. Sci. Rep. 2023, 13, 11976. [Google Scholar] [CrossRef]
- Markworth, J.F.; Maddipati, K.R.; Cameron-Smith, D. Emerging roles of pro-resolving lipid mediators in immunological and adaptive responses to exercise-induced muscle injury. Exerc. Immunol. Rev. 2016, 22, 110–134. [Google Scholar] [PubMed]
- U.S. Department of Agriculture, FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients (accessed on 15 September 2023).
- Phenol-Explorer. Available online: http://phenol-explorer.eu/contents/food/156 (accessed on 15 September 2023).
- Kim, H.; Castellon-Chicas, M.J.; Arbizu, S.; Talcott, S.T.; Drury, N.L.; Smith, S.; Mertens-Talcott, S.U. Mango (Mangifera indica L.) Polyphenols: Anti-inflammatory intestinal microbial health benefits, and associated mechanisms of actions. Molecules 2021, 26, 2732. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Venancio, V.P.; Fang, C.; Dupont, A.W.; Talcott, S.T.; Mertens-Talcott, S.U. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr. Res. 2020, 75, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Banerjee, N.; Ivanov, I.; Pfent, C.M.; Prudhomme, K.R.; Bisson, W.H.; Dashwood, R.H.; Talcott, S.T.; Mertens-Talcott, S.U. Comparison of anti-inflammatory mechanisms of mango (Mangifera indica L.) and pomegranate (Punica granatum L.) in a preclinical model of colitis. Mol. Nutr. Food Res. 2016, 60, 1912–1923. [Google Scholar] [CrossRef] [PubMed]
- Asuncion, P.; Liu, C.; Castro, R.; Yon, V.; Rosas, M.; Hooshmand, S.; Kern, M.; Hong, M.Y. The effects of fresh mango consumption on gut health and microbiome—Randomized controlled trial. Food Sci. Nutr. 2023, 11, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Rosas, M.; Pinneo, S.; O’Mealy, C.; Tsang, M.; Liu, C.; Kern, M.; Hooshmand, S.; Hong, M.Y. Effects of fresh mango consumption on cardiometabolic risk factors in overweight and obese adults. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Pinneo, S.; O’Mealy, C.; Rosas, M., Jr.; Tsang, M.; Liu, C.; Kern, M.; Hooshmand, S.; Hong, M.Y. Fresh mango consumption promotes greater satiety and improves postprandial glucose and insulin responses in healthy overweight and obese adults. J. Med. Food 2022, 25, 381–388. [Google Scholar] [CrossRef]
- Cáceres-Jiménez, S.; Rodríguez-Solana, R.; Dobani, S.; Pourshahidi, K.; Gill, C.; Moreno-Rojas, J.M.; Almutairi, T.M.; Crozier, A.; Pereira-Caro, G. UHPLC-HRMS spectrometric analysis: Method validation and plasma and urinary metabolite identification after mango pulp intake. J. Agric. Food Chem. 2023, 71, 11520–11533. [Google Scholar] [CrossRef]
- Hartung, N.M.; Fischer, J.; Ostermann, A.I.; Willenberg, I.; Rund, K.M.; Schebb, N.H.; Garscha, U. Impact of food polyphenols on oxylipin biosynthesis in human neutrophils. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 1536–1544. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Rasmussen, M.K.; Škrlep, M.; Batorek Lukač, N.; Škorjanc, D.; Čandek-Potokar, M. Tissue-specific regulation of CYP3A by hydrolysable tannins in male pigs. Xenobiotica 2016, 46, 591–596. [Google Scholar] [CrossRef]
- Basheer, L.; Kerem, Z. Interactions between CYP3A4 and dietary polyphenols. Oxid. Med. Cell. Longev. 2015, 2015, 854015. [Google Scholar] [CrossRef] [PubMed]
- Kampschulte, N.; Alasmer, A.; Empl, M.T.; Krohn, M.; Steinberg, P.; Schebb, N.H. Dietary polyphenols inhibit the cytochrome P450 monooxygenase branch of the arachidonic acid cascade with remarkable structure-dependent selectivity and potency. J. Agric. Food Chem. 2020, 68, 9235–9244. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Zhang, Q. Comprehensive analysis of oxylipins in human plasma using reversed-phase liquid chromatography-triple quadrupole mass spectrometry with heatmap-assisted selection of transitions. Anal. Bioanal. Chem. 2019, 411, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Toora, B.D.; Rajagopal, G. Measurement of creatinine by Jaffe’s reaction--determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian. J. Exp. Biol. 2002, 40, 352–354. [Google Scholar] [PubMed]
- Nieman, D.C.; Kay, C.D.; Rathore, A.S.; Grace, M.H.; Strauch, R.C.; Stephan, E.H.; Sakaguchi, C.A.; Lila, M.A. Increased plasma levels of gut-derived phenolics linked to walking and running following two weeks of flavonoid supplementation. Nutrients 2018, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.C.; Krenek, K.A.; Meibohm, B.; Mertens-Talcott, S.U.; Talcott, S.T. Urinary metabolites from mango (Mangifera indica L. cv. Keitt) galloyl derivatives and in vitro hydrolysis of gallotannins in physiological conditions. Mol. Nutr. Food Res. 2016, 60, 542–550. [Google Scholar] [CrossRef]
- Barnes, R.C.; Kim, H.; Fang, C.; Bennett, W.; Nemec, M.; Sirven, M.A.; Suchodolski, J.S.; Deutz, N.; Britton, R.A.; Mertens-Talcott, S.U.; et al. Body mass index as a determinant of systemic exposure to gallotannin metabolites during 6-week consumption of mango (Mangifera indica L.) and modulation of intestinal microbiota in lean and obese individuals. Mol. Nutr. Food Res. 2019, 63, e1800512. [Google Scholar] [CrossRef]
- Fan, J.; Xiao, D.; Zhang, L.; Edirisinghe, I.; Burton-Freeman, B.; Sandhu, A.K. pharmacokinetic characterization of (poly)phenolic metabolites in human plasma and urine after acute and short-term daily consumption of mango pulp. Molecules 2020, 25, 5522. [Google Scholar] [CrossRef]
- Beyer, M.P.; Videla, L.A.; Farías, C.; Valenzuela, R. Potential clinical applications of pro-resolving lipids mediators from docosahexaenoic acid. Nutrients 2023, 15, 3317. [Google Scholar] [CrossRef]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.-M.; Lein, P.J.; et al. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef]
- Gladine, C.; Fedorova, M. The clinical translation of eicosanoids and other oxylipins, although challenging, should be actively pursued. J. Mass Spectrom. Adv. Clin. Lab 2021, 21, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Eccles, J.A.; Baldwin, W.S. Detoxification cytochrome P450s (CYPs) in families 1-3 produce functional oxylipins from polyunsaturated fatty acids. Cells 2022, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Mohos, V.; Fliszár-Nyúl, E.; Lemli, B.; Zsidó, B.Z.; Hetényi, C.; Mladěnka, P.; Horký, P.; Pour, M.; Poór, M. Testing the pharmacokinetic interactions of 24 colonic flavonoid metabolites with human serum albumin and cytochrome P450 enzymes. Biomolecules 2020, 10, 409. [Google Scholar] [CrossRef] [PubMed]
Subject Characteristics Males (M), n = 13; Females (F), n = 9 | Mean | Std. Error Mean | t-Test p-Value | |
---|---|---|---|---|
Age (y) | M | 43.15 | 2.12 | 0.169 |
F | 37.89 | 3.21 | ||
Weight (kg) | M | 84.08 | 2.27 | <0.001 |
F | 59.03 | 2.09 | ||
Height (cm) | M | 181.31 | 1.37 | <0.001 |
F | 166.06 | 1.72 | ||
Body mass index (kg/m2) | M | 25.56 | 0.55 | <0.001 |
F | 21.44 | 0.84 | ||
Body fat (%) | M | 22.62 | 1.62 | 0.830 |
F | 23.19 | 2.15 | ||
VO2max (mL·kg−1min−1) | M | 43.52 | 2.30 | 0.143 |
F | 37.94 | 2.87 | ||
Watts max | M | 282.69 | 13.69 | <0.001 |
F | 197.22 | 12.80 | ||
Heart rate max (beats/min) | M | 169.85 | 2.29 | 0.966 |
F | 169.67 | 3.83 | ||
Ventilation max (L/min) | M | 124.78 | 9.60 | 0.005 |
F | 83.53 | 6.93 |
Performance Variable | Mean | t-Test p-Value | |
---|---|---|---|
Distance cycled (km) | Water | 60.9 ± 1.8 | 0.238 |
Mango | 59.1 ± 2.0 | ||
Average speed (km/h) | Water | 26.3 ± 0.8 | 0.325 |
Mango | 25.5 ± 0.9 | ||
Average watts; % maximal watts | Water | 145 ± 8.5 58.8 ± 1.9 | 0.756 0.907 |
Mango | 146 ± 9.0 59.0 ± 1.5 | ||
Average VO2 (mL·kg−1min−1); % maximal VO2 | Water | 28.0 ± 1.2 68.6 ± 2.2 | 0.562 0.471 |
Mango | 28.5 ± 1.1 70.1 ± 2.3 | ||
Average heart rate (beats/min); % maximal heart rate | Water | 138 ± 3.4 71.0 ± 4.2 | 0.604 0.795 |
Mango | 136 ± 2.5 69.1 ± 3.8 |
Putative Metabolite | Retention Time (min) | Calculated m/z (₋) | Measured m/z (₋) | MS/MS | Mass Error (ppm) |
---|---|---|---|---|---|
catechol-O-sulfate | 2.14 | 188.9857 | 188.9854 | 109.0430 | −1.59 |
O-methylcatechol-O-sulfate (isomer 1) | 3.39 | 203.0014 | 203.0008 | 123.0531, 108.0317 | −2.96 |
O-methylcatechol-O-sulfate (isomer 2) | 4.59 | 203.0014 | 203.0006 | 123.0452 | −3.94 |
O-methylcatechol-O-sulfate (isomer 3) | 5.35 | 203.0014 | 203.0117 | 123.0522 | 50.74 |
O-methylgallic acid-O-glucuronide | 1.85 | 359.0614 | 359.0617 | 168.0416, 312.9626 | 0.84 |
O-methylgallic acid-O-sulfate | 2.99 | 262.9862 | 262.9866 | 183.0268, 168.0047 | 1.52 |
O-methylpyrogallol-O-sulfate (isomer 1) | 1.56 | 218.9964 | 218.9956 | 139.043, 124.0129 | −3.65 |
O-methylpyrogallol-O-sulfate (isomer 2) | 2.07 | 218.9964 | 218.9957 | 139.0426, 204.9990, 125.0328 | −3.20 |
O-methylpyrogallol-O-sulfate (isomer 3) | 3.09 | 218.9964 | 218.9958 | 139.048, 124.0239 | −2.74 |
pyrogallol-O-sulfate (isomer 1) | 1.09 | 204.9807 | 204.9798 | 125.0255 | −4.39 |
pyrogallol-O-sulfate (isomer 2) | 2.05 | 204.9807 | 204.9799 | 125.0329 | −3.90 |
pyrogallol-O-sulfate (isomer 3) | 2.79 | 204.9807 | 204.9801 | 125.0329 | −2.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakaguchi, C.A.; Nieman, D.C.; Omar, A.M.; Strauch, R.C.; Williams, J.C.; Lila, M.A.; Zhang, Q. Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise. Nutrients 2024, 16, 36. https://doi.org/10.3390/nu16010036
Sakaguchi CA, Nieman DC, Omar AM, Strauch RC, Williams JC, Lila MA, Zhang Q. Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise. Nutrients. 2024; 16(1):36. https://doi.org/10.3390/nu16010036
Chicago/Turabian StyleSakaguchi, Camila A., David C. Nieman, Ashraf M. Omar, Renee C. Strauch, James C. Williams, Mary Ann Lila, and Qibin Zhang. 2024. "Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise" Nutrients 16, no. 1: 36. https://doi.org/10.3390/nu16010036
APA StyleSakaguchi, C. A., Nieman, D. C., Omar, A. M., Strauch, R. C., Williams, J. C., Lila, M. A., & Zhang, Q. (2024). Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise. Nutrients, 16(1), 36. https://doi.org/10.3390/nu16010036