Metasurface-Based Image Classification Using Diffractive Deep Neural Network
<p>Schematic diagram of the proposed image classifier. An incident plane wave passes through the input plane carrying the information of handwriting digits and undergoes three-layer phased transmitarray which provide layer-by-layer phase modulation with spacing of <span class="html-italic">d</span> = 6.5 μm. After propagating the entire system, light will be focused at a specific location of the output plane corresponding to different digits. From the light intensity distribution pattern, it can be inferred that the target being measured at this moment is the handwritten digit ‘2’.</p> "> Figure 2
<p>Numerical simulation results of D<sup>2</sup>NN. (<b>a</b>) Phase distribution of the hidden layers obtained by the training results of D<sup>2</sup>NN model. (<b>b</b>) Confusion matrix of the classification task on D<sup>2</sup>NN model in the final numerical simulation, achieving an overall accuracy of approximately 96.2% for six-class digit image classification. (<b>c</b>) The evolution of accuracy and loss value during the classification process with increasing the numbers of iteration.</p> "> Figure 3
<p>The geometry structure of unit cell of all-dielectric phased transmitarray. (<b>a</b>) Schematic diagram of a tunable transmissive meta-atom in an all-dielectric Huygens phase. Here, <span class="html-italic">H</span> = 180 nm, <span class="html-italic">h</span> = 350 nm, <span class="html-italic">p</span> = 360 nm. (<b>b</b>) A complete phase coverage from 0 to 2π for the cylinder with radius varies from 30 to 80 nm.</p> "> Figure 4
<p>Schematic diagram of electromagnetic simulation samples and results. (<b>a</b>–<b>f</b>) Selected simulation test sample images. (<b>g</b>–<b>l</b>) Light field distribution images of simulation output planes. (<b>m</b>–<b>r</b>) Energy distribution graphs within each numerical label area.</p> "> Figure 5
<p>Illustrative diagrams of numerical simulation results for animal image samples. (<b>a</b>) The original image of samples marked as “horse”, the converted grayscale image, the light field distribution on the detector plane through five diffraction layers, and the energy proportion within each marked area on the detector plane. (<b>b</b>) The original image of samples marked as “frog”, the converted grayscale image, and the light field distribution on the detector plane through five diffraction layers, and the energy proportion within each marked area on the detector plane.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm of D2NN
2.2. All-Dielectric Metasurface Design
3. Results
3.1. Digital Images Classification
3.2. Animal Images Classification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdollahramezani, S.; Hemmatyar, O.; Adibi, A. Meta-optics for spatial optical analog computing. J Nanophotonics. Nanophotonics 2020, 9, 4075–4095. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Sounas, D.L.; Alù, A.; Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 2020, 6, 207–225. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, W.; Chen, R.; Chen, W.; Chen, R.; Ma, Y. Analog Optical Spatial Differentiators Based on Dielectric Metasurfaces. Adv. Opt. Mater. 2020, 8, 1901523. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Kravchenko, I.I.; Valentine, J. Flat optics for image differentiation. Nat. Photonics 2020, 14, 316–323. [Google Scholar] [CrossRef]
- Goh, H.; Alù, A. Nonlocal Scatterer for Compact Wave-Based Analog Computing. Phys. Rev. Lett. 2022, 128, 073201. [Google Scholar] [CrossRef]
- Chen, Y.; Nazhamaiti, M.; Xu, H.; Meng, Y.; Zhou, T.; Li, G.; Fan, J.; Wei, Q.; Wu, J.; Qiao, F.; et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 2023, 623, 48–57. [Google Scholar] [CrossRef]
- Kam, Z.; Hanser, B.; Gustafsson, M.; Agard, D.; Sedat, J. Computational adaptive optics for live three-dimensional biological imaging. Proc. Natl. Acad. Sci. USA 2001, 98, 3790–3795. [Google Scholar] [CrossRef]
- Jia, P.; Zhao, Y.; Xue, G.; Cai, D. Optical transient object classification in wide-field small aperture telescopes with a neural network. Astron. J. 2019, 157, 250. [Google Scholar] [CrossRef]
- Oppenheimer, B.R.; Hinkley, S. High-contrast observations in optical and infrared astronomy. Annu. Rev. Astron. Astrophys. 2009, 47, 253–289. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, X.; Zhou, T.; Fang, L. A multichannel optical computing architecture for advanced machine vision. Light Sci. Appl. 2022, 11, 255. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Q.; Luo, Z.J.; Hong, Q.R.; Xiao, Q.; Zhang, H.C.; Miao, L.; Yu, W.M.; Cheng, Q.; Li, L. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 2022, 5, 113–122. [Google Scholar] [CrossRef]
- Wang, T.; Ma, S.-Y.; Wright, L.G.; Onodera, T.; Richard, B.C.; McMahon, P.L. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 2022, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Ashtiani, F.; Geers, A.J.; Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 2022, 606, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.; La Spada, L. Deep learning techniques and COVID-19 drug discovery: Fundamentals, state-of-the-art and future directions. In Emerging Technologies During the Era of COVID-19 Pandemic; Springer: Cham, Switzerland, 2021; pp. 9–31. [Google Scholar]
- Naveed, H.; Khan, A.U.; Qiu, S.; Saqib, M.; Anwar, S.; Usman, M.; Akhtar, N.; Barnes, N.; Mian, A. A comprehensive overview of large language models. arXiv 2023, arXiv:2307.06435. [Google Scholar]
- Zhu, C.; Bamidele, E.A.; Shen, X.; Zhu, G.; Li, B. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 2024, 124, 4258–4331. [Google Scholar] [CrossRef]
- Kojima, K.; Tahersima, M.H.; Koike-Akino, T.; Jha, D.K.; Tang, Y.; Wang, Y.; Parsons, K. Deep neural networks for inverse design of nanophotonic devices. J. Light. Technol. 2021, 39, 1010–1019. [Google Scholar] [CrossRef]
- So, S.; Badloe, T.; Noh, J.; Bravo-Abad, J.; Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 2020, 9, 1041–1057. [Google Scholar] [CrossRef]
- Han, X.; Fan, Z.; Liu, Z.; Li, C.; Guo, L.J. Inverse design of metasurface optical filters using deep neural network with high degrees of freedom. InfoMat 2021, 3, 432–442. [Google Scholar] [CrossRef]
- Lin, X.; Rivenson, Y.; Yardimei, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004. [Google Scholar] [CrossRef]
- Yan, T.; Wu, J.; Zhou, T.; Xie, H.; Xu, F.; Fan, J.; Fang, L.; Lin, X.; Dai, Q. Fourier-space Diffractive Deep Neural Network. Phys. Rev. Lett. 2019, 123, 023901. [Google Scholar] [CrossRef]
- Bai, B.; Li, Y.; Luo, Y.; Li, X.; Cetintas, E.; Jarrahi, M.; Ozcan, A. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light-Sci. Appl. 2023, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Mengu, D.; Yardimci, N.T.; Rivenson, Y.; Veli, M.; Jarrahi, M.; Ozcan, A. Design of task-specific optical systems using broadband diffractive neural networks. Light-Sci. Appl. 2019, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Mengu, D.; Yardimci, N.T.; Luo, Y.; Li, X.R.; Veli, M.; Rivenson, Y.; Jarrahi, M.; Ozcan, A. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 2021, 7, eabd7690. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Sorger, V.J.; Miscuglio, M.; Al-Qadasi, M.; Mukherjee, A.; Lampe, L.; Nichols, M.; Tait, A.N.; Ferreira de Lima, T.; Marquez, B.A.; et al. Prospects and applications of photonic neural networks. Adv. Phys. X 2022, 7, 1981155. [Google Scholar] [CrossRef]
- Sun, S.; He, Q.; Hao, J.; Xiao, S.; Zhou, L. Electromagnetic metasurfaces: Physics and applications. Adv. Opt. Photonics 2019, 11, 380–479. [Google Scholar] [CrossRef]
- Hail, C.U.; Michel, A.-K.U.; Poulikakos, D.; Eghlidi, H. Optical Metasurfaces: Evolving from Passive to Adaptive. Adv. Opt. Mater. 2019, 7, 1801786. [Google Scholar] [CrossRef]
- Luo, X. Subwavelength Artificial Structures: Opening a New Era for Engineering Optics. Adv. Mater. 2019, 31, 1804680. [Google Scholar] [CrossRef]
- Luo, X. Metamaterials and Metasurfaces. Adv. Opt. Mater. 2019, 7, 1900885. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Jiang, Z.H.; Shi, T.; Tang, M.; Zhou, Z.; Chen, Z.N.; Qiu, C. Metantenna: When Metasurface Meets Antenna Again. IEEE Trans. Antennas Propag. 2020, 68, 1332–1347. [Google Scholar] [CrossRef]
- Yang, J.; Gurung, S.; Bej, S.; Ni, P.; Howard Lee, H.W. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 036101. [Google Scholar] [CrossRef]
- Xu, J.; Yang, R.; Fan, Y.; Fu, Q.; Zhang, F. A review of tunable electromagnetic metamaterials with anisotropic liquid crystals. Front. Phys. 2021, 9, 633104. [Google Scholar] [CrossRef]
- Cheng, K.; Wei, Z.; Fan, Y.; Zhang, X.; Wu, C.; Li, H. Realizing broadband transparency via manipulating the hybrid coupling modes in metasurfaces for high-efficiency metalens. Adv. Opt. Mater. 2019, 7, 1900016. [Google Scholar] [CrossRef]
- Wang, S.; Wu, P.C.; Su, V.-C.; Lai, Y.-C.; Chen, M.-K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.-T.; Wang, J.-H. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, H.; Liu, C.; Li, L.; Cui, T.J. Intelligent metasurfaces: Control, communication and computing. eLight 2022, 2, 7. [Google Scholar] [CrossRef]
- Filipovich, M.J.; Malyshev, A.; Lvovsky, A. Role of spatial coherence in diffractive optical neural networks. arXiv 2023, arXiv:2310.03679. [Google Scholar] [CrossRef]
- Duan, Z.Y.; Chen, H.; Lin, X. Optical multi-task learning using multi-wavelength diffractive deep neural networks. Nanophotonics 2023, 12, 893–903. [Google Scholar] [CrossRef]
- Zheng, M.; Shi, L.; Zi, J. Optimize performance of a diffractive neural network by controlling the Fresnel number. Photonics Res. 2022, 10, 2667–2676. [Google Scholar] [CrossRef]
- Chen, H.; Feng, J.A.; Jiang, M.W.; Wang, Y.Q.; Lin, J.; Tan, J.B.; Jin, P. Diffractive Deep Neural Networks at Visible Wavelengths. Engineering 2021, 7, 1483–1491. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, J.; Hu, Q.; Zeng, R.; Zhang, M. Non-volatile Reconfigurable Digital Optical Diffractive Neural Network Based on Phase Change Material. arXiv 2023, arXiv:2305.11196. [Google Scholar]
- Tanriover, I.; Demir, H.V. Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared. Appl. Phys. Lett. 2019, 114, 043105. [Google Scholar] [CrossRef]
- Ollanik, A.J.; Smith, J.A.; Belue, M.J.; Escarra, M.D. High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photonics 2018, 5, 1351–1358. [Google Scholar] [CrossRef]
- Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D.N.; Brener, I.; Pertsch, T.; Kivshar, Y.S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 2015, 3, 813–820. [Google Scholar] [CrossRef]
- Zhu, W.; Fan, Y.; Yang, R.; Geng, G.; Fu, Q.; Gu, C.; Li, J.; Zhang, F. Polarization-multiplexed silicon metasurfaces for multi-channel visible light modulation. Adv. Funct. Mater. 2022, 32, 2200013. [Google Scholar] [CrossRef]
- He, S.S.; Wang, R.S.; Luo, H.L. Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics 2022, 11, 1083–1108. [Google Scholar] [CrossRef]
- Goodman, J.W.; Cox, M.E. Introduction to Fourier Optics. Phys. Today 1969, 22, 97–101. [Google Scholar] [CrossRef]
- Matsushima, K.; Shimobaba, T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Opt. Express 2009, 17, 19662–19673. [Google Scholar] [CrossRef]
- Brigham, E.O.; Morrow, R. The fast Fourier transform. IEEE Spectr. 1967, 4, 63–70. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; JMLR Workshop and Conference Proceedings. pp. 249–256. [Google Scholar]
- Gu, Z.; Ma, Q.; Gao, X.; You, J.W.; Cui, T.J. Classification of metal handwritten digits based on microwave diffractive deep neural network. Adv. Opt. Mater. 2024, 12, 2301938. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef]
- Luo, X.; Hu, Y.; Ou, X.; Li, X.; Lai, J.; Liu, N.; Cheng, X.; Pan, A.; Duan, H. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 2022, 11, 158. [Google Scholar] [CrossRef]
Model | Network Size | Pixel Size | Incident Wavelength | Accuracy (%) |
---|---|---|---|---|
DONNs [36] | 100 × 100 × 5 | 10 μm × 10 μm | 700 nm | 97.54 |
Multi-wavelength D2NNs [37] | 200 × 200 × 5 | 4 μm × 4 μm | 400 nm, 500 nm and 700 nm | 95.6 |
SL-DNN [38] | 200 × 200 × 1 | 8 μm × 8 μm | 515 nm | 97.08 |
Visible Light D2NN [39] | 1000 × 1000 × 5 | 4 μm × 4 μm | 632 nm | 91.57 |
R-ODNN [40] | 120 × 120 × 3 | 1 μm × 1 μm | 1550 nm | 94.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Deng, C.; Ye, F.; Li, H.; Shen, F.; Fan, Y.; Gong, Y. Metasurface-Based Image Classification Using Diffractive Deep Neural Network. Nanomaterials 2024, 14, 1812. https://doi.org/10.3390/nano14221812
Cheng K, Deng C, Ye F, Li H, Shen F, Fan Y, Gong Y. Metasurface-Based Image Classification Using Diffractive Deep Neural Network. Nanomaterials. 2024; 14(22):1812. https://doi.org/10.3390/nano14221812
Chicago/Turabian StyleCheng, Kaiyang, Cong Deng, Fengyu Ye, Hongqiang Li, Fei Shen, Yuancheng Fan, and Yubin Gong. 2024. "Metasurface-Based Image Classification Using Diffractive Deep Neural Network" Nanomaterials 14, no. 22: 1812. https://doi.org/10.3390/nano14221812
APA StyleCheng, K., Deng, C., Ye, F., Li, H., Shen, F., Fan, Y., & Gong, Y. (2024). Metasurface-Based Image Classification Using Diffractive Deep Neural Network. Nanomaterials, 14(22), 1812. https://doi.org/10.3390/nano14221812