Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction
<p>A generic framework for heart failure management (e.g., CVD diagnosis).</p> "> Figure 2
<p>A general example of CVD prediction using supervised learning based on a feature selection mechanism.</p> "> Figure 3
<p>The MLPNN-AOA model implementation phases.</p> "> Figure 4
<p>ROC curve for MLPNN.</p> "> Figure 5
<p>ROC curve for MLPNN-AOA.</p> "> Figure 6
<p>Comparison of classifier performances.</p> ">
Abstract
:1. Introduction
- To select the best features that affect the accuracy of MLPNN using an AOA.
- To compare MLPNN-AOA with other similar models on the same dataset to verify its performance.
- To compare AOA with some other optimization algorithms in selecting the most relevant features in the Cleveland dataset.
- To eliminate the problems of overfitting and underfitting in the CVD prediction model by developing a hybrid MLPNN-AOA algorithm.
- Presents practical and academic knowledge to researchers.
- Helps health professionals, especially doctors, in CVD diagnosis.
- Supports anyone interested in optimization algorithms and ML techniques, especially in the utilization of AOA and MLPNN in many applications.
2. Literature Review
3. Materials and Methods
- Extracting medical data that are obtained from the web in a tabular form containing different data types.
- Data preprocessing using normalization techniques, e.g., chi-square and gain ratio, including handling missing data, then splitting the dataset into training and testing datasets.
- The AOA optimizer is used for the feature selection task to determine the best subset of features from the training dataset.
- The MLPNN classifier is then employed on the training dataset to train the prediction model for the classification task based on the best subset of features.
- Finally, the MLPNN classifier is employed on the testing dataset for classifying the unlabeled data into two classes for the prediction model.
3.1. Phase 1: Data Preprocessing
3.2. Phase 2: Data Reduction
Algorithm 1 Pseudo-code of the AOA algorithm (source: [6]) |
1: Initialize the Arithmetic Optimization Algorithm parameters α, µ 2: Initialize the solutions’ positions randomly ( ). (Solutions: i = 1,…, N.) 3: while (C_Iter<M_Iter) do 4: Calculate the fitness function for the given solutions 5: Find the best solution (Determined best so far). 6: Update the MOA value. 7: Update the MOP value. 8: for (i = 1 to solutions) do 9: for (j = 1 to positions) do 10: Generate a random value between [0, 1] (r1, r2, and r3) 11: if r1>MOA then 12: Exploration phase 13: if r2>0.5 then 14: (1) Apply the Division math operator (D“÷”). 15: Update the ith solutions’ positions. 16: else 17: (2) Apply the Multiplication math operator (M“×”). 18: Update the ith solutions’ positions. 19: end if 20: else 21: Exploitation phase 22: if r3>0.5 then 23: (1) Apply the Subtraction math operator (S“−”). 24: Update the ith solutions’ positions. 25: else 26: (2) Apply the Addition math operator (A“+”). 27: Update the ith solutions’ positions. 28: end if 29: end if 30: end for 31: end for 32: C_Iter = C_Iter + 1 33: end while 34: Return the best solution |
3.3. Phase 3: Classification Task
- The hidden layer’s number: four hidden layers with four neurons for each layer and two output units.
- The biases and weights were first initialized randomly.
- The maximum number of epochs is 500.
- The activation function was set via a “set” method.
4. Results
4.1. Experimental Setup
4.2. Testing and Analysis
4.2.1. CVD Prediction without Using FS
4.2.2. CVD Prediction Using MLPNN-AOA
4.2.3. Comparison of MLPNN-AOA with MLPNN
4.2.4. Comparison of MLPNN-AOA with Other State-of-the-Art Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Munsif, M.; Khan, H.; Khan, Z.A.; Hussain, A.; Ullah, F.U.; Lee, M.Y.; Baik, S.W. PV-ANet: Attention-Based Network for Short-term Photovoltaic Power Forecasting. In Proceedings of the 8th International Conference on Next Generation Computing, Jeju, Republic of Korea, 6–8 October 2022; pp. 133–135. [Google Scholar]
- Khan, H.; Haq, I.U.; Munsif, M.; Mustaqeem; Khan, S.U.; Lee, M.Y. Automated Wheat Diseases Classification Framework Using Advanced Machine Learning Technique. Agriculture 2022, 12, 1226. [Google Scholar] [CrossRef]
- Vijayashree, J.; Sultana, H.P. A machine learning framework for feature selection in heart disease classification using improved particle swarm optimization with support vector machine classifier. Program. Comput. Softw. 2018, 44, 388–397. [Google Scholar] [CrossRef]
- Prakash, V.J.; Karthikeyan, N.K. Enhanced Evolutionary Feature Selection and Ensemble Method for Cardiovascular Disease Prediction. Interdiscip. Sci. Comput. Life Sci. 2021, 13, 389–412. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.U.; Li, J.P.; Memon, M.H.; Nazir, S.; Sun, R. A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms. Mob. Inf. Syst. 2018, 2018, 3860146. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Detrano, R.; Janosi, A.; Steinbrunn, W.; Pfisterer, M.; Schmid, J.; Sandhu, S.; Guppy, K.; Lee, S.; Froelicher, V. International application of a new probability algorithm for the diagnosis of coronary artery disease. Am. J. Cardiol. 1989, 64, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Tash, A.A.; Al-Bawardy, R.F. Cardiovascular Disease in Saudi Arabia: Facts and the Way Forward. J. Saudi Heart Assoc. 2023, 35, 148–162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, T.; Gao, Z.; Zhuang, Y. Fault Prediction of Control Clusters Based on an Improved Arithmetic Optimization Algorithm and BP Neural Network. Mathematics 2023, 11, 2891. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Efficient Data-Driven Machine Learning Models for Cardiovascular Diseases Risk Prediction. Sensors 2023, 23, 1161. [Google Scholar] [CrossRef]
- Dweekat, O.Y.; Lam, S.S. Cervical Cancer Diagnosis Using an Integrated System of Principal Component Analysis, Genetic Algorithm, and Multilayer Perceptron. Healthcare 2022, 10, 2002. [Google Scholar] [CrossRef]
- Zafar, A.; Hussain, S.J.; Ali, M.U.; Lee, S.W. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study. Sensors 2023, 23, 3714. [Google Scholar] [CrossRef] [PubMed]
- Al-Dulaimi, K.; Banks, J.; Al-Sabaawi, A.; Nguyen, K.; Chandran, V.; Tomeo-Reyes, I. Classification of HEp-2 Staining Pattern Images Using Adapted Multilayer Perceptron Neural Network-Based Intra-Class Variation of Cell Shape. Sensors 2023, 23, 2195. [Google Scholar] [CrossRef] [PubMed]
- Raj, P.; Evangeline, P. The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Desuky, A.S.; Hussain, S.; Kausar, S.; Islam, M.A.; El Bakrawy, L.M. EAOA: An Enhanced Archimedes Optimization Algorithm for Feature Selection in Classification. IEEE Access 2021, 9, 120795–120814. [Google Scholar] [CrossRef]
- Janosi, A.; Steinbrunn, W.; Pfisterer, M.; Detrano, R. Heart Disease Dataset—UCI Machine Learning Repository. Center for Machine Learning and Intelligent Systems. 2021. Available online: https://archive.ics.uci.edu/ml/datasets/heart+Disease (accessed on 21 October 2021).
- Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Douglass, M.J. Book Review: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow, 2nd ed.; Aurélien, G., Ed.; 1005 Gravenstein Highway North; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020. [Google Scholar]
- Alrajeh, N.A.; Khan, S.; Shams, B. Intrusion detection systems in wireless sensor networks: A review. Int. J. Distrib. Sens. Netw. 2013, 9, 167575. [Google Scholar] [CrossRef]
- Hichem, H.; Elkamel, M.; Rafik, M.; Mesaaoud, M.T.; Ouahiba, C. A new binary grasshopper optimization algorithm for feature selection problem. J. King Saud Univ-Comput. Inf. Sci. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Alweshah, M.; Khalaileh, S.A.; Gupta, B.B.; Almomani, A.; Hammouri, A.I.; Al-Betar, M.A. The monarch butterfly optimization algorithm for solving feature selection problems. Neural Comput. Appl. 2020, 34, 11267–11281. [Google Scholar] [CrossRef]
- Chen, C.W.; Tsai, Y.H.; Chang, F.R.; Lin, W.C. Ensemble feature selection in medical datasets: Combining filter, wrapper, and embedded feature selection results. Expert Syst. 2020, 37, e12553. [Google Scholar] [CrossRef]
- Parthiban, R.; Usharani, S.; Saravanan, D.; Jayakumar, D.; Palani, D.U.; StalinDavid, D.D.; Raghuraman, D. Prognosis of chronic kidney disease (CKD) using hybrid filter wrapper embedded feature selection method. Eur. J. Mol. Clin. Med. 2021, 7, 2511–2530. [Google Scholar]
- Kim JO, R.; Jeong, Y.S.; Kim, J.H.; Lee, J.W.; Park, D.; Kim, H.S. Machine Learning-Based Cardiovascular Disease Prediction Model: A Cohort Study on the Korean National Health Insurance Service Health Screening Database. Diagnostics 2021, 11, 943. [Google Scholar] [CrossRef]
- Dutta, A.; Batabyal, T.; Basu, M.; Acton, S.T. An efficient convolutional neural network for coronary heart disease prediction. Expert Syst. Appl. 2020, 159, 113408. [Google Scholar] [CrossRef]
- Gadde, H. Heart Disease Predictions Using Machine Learning Algorithms and Ensemble Learning. Int. J. Eng. Trends Appl. 2020, 7, 4. [Google Scholar]
- Kumar, M.N.; Koushik KV, S.; Deepak, K. Prediction of heart diseases using data mining and machine learning algorithms and tools. International Journal of Scientific Research in Computer Science. Eng. Inf. Technol. 2018, 3, 887–898. [Google Scholar]
- Zaffar, M.; Hashmani, M.A.; Savita, K.S.; Khan, S.A. A review on feature selection methods for improving the performance of classification in educational data mining. Int. J. Inf. Technol. Manag. 2021, 20, 110–131. [Google Scholar] [CrossRef]
- Al-Yarimi, F.A.M.; Munassar, N.M.A.; Bamashmos, M.H.M.; Ali, M.Y.S. Feature optimization by discrete weights for heart disease prediction using supervised learning. Soft Comput. 2021, 25, 1821–1831. [Google Scholar] [CrossRef]
- Manur, M.; Pani, A.K.; Kumar, P. A prediction technique for heart disease based on long short term memory recurrent neural network. Int. J. Intell. Eng. Syst. 2020, 13, 31–33. [Google Scholar] [CrossRef]
- Gokulnath, C.B.; Shantharajah, S.P. An optimized feature selection based on genetic approach and support vector machine for heart disease. Clust. Comput. 2019, 22, 14777–14787. [Google Scholar] [CrossRef]
- Javeed, A.; Zhou, S.; Yongjian, L.; Qasim, I.; Noor, A.; Nour, R. An intelligent learning system based on random search algorithm and optimized random forest model for improved heart disease detection. IEEE Access 2019, 7, 180235–180243. [Google Scholar] [CrossRef]
- Ali, L.; Rahman, A.; Khan, A.; Zhou, M.; Javeed, A.; Khan, J.A. An automated diagnostic system for heart disease prediction based on chi2 statistical model and optimally configured deep neural network. IEEE Access 2019, 7, 34938–34945. [Google Scholar] [CrossRef]
- Hancer, E.; Xue, B.; Zhang, M.; Karaboga, D.; Akay, B. Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 2018, 422, 462–479. [Google Scholar] [CrossRef]
- Jamro, W.A.; Shaikh, H.; Mahar, J.A. Comprehensive Analysis of Neural Network Techniques in Computational Linguistic Applications. Asian Journal of Engineering. Sci. Technol. 2016, 2016, 15. [Google Scholar]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–46. [Google Scholar] [CrossRef]
- Marateb, H.R.; Goudarzi, S. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system. J. Res. Med. Sci. 2015, 20, 214–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, Z.; Melton, G.B.; Arsoniadis, E.G.; Wang, Y.; Kwaan, M.R.; Simon, G.J. Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record. J. Biomed. Inform. 2017, 68, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Lv, F. Data Preprocessing and Apriori Algorithm Improvement in Medical Data Mining. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021; pp. 1205–1208. [Google Scholar]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Derhab, A. A Novel Two-Stage Deep Learning Model for Efficient Network Intrusion Detection. IEEE Access 2019, 7, 30373–30385. [Google Scholar]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Back-propagation and other differentiation algorithms. Deep. Learn. 2016, 2016, 200–220. [Google Scholar]
- Powers, D. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Gruell, H.; Vanshylla, K.; Tober-Lau, P.; Hillus, D.; Schommers, P.; Lehmann, C.; Kurth, F.; Sander, L.E.; Klein, F. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat. Med. 2022, 28, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Gareth, J.; Witten, D.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-1071614174. [Google Scholar]
- Sikalidis, A.K.; Kristo, A.S.; Reaves, S.K.; Kurfess, F.J.; DeLay, A.M.; Vasilaky, K.; Donegan, L. Capacity Strengthening Undertaking—Farm Organized Response of Workers against Risk for Diabetes: (C.S.U.—F.O.R.W.A.R.D. with Cal Poly)—A Concept Approach to Tackling Diabetes in Vulnerable and Underserved Farmworkers in California. Sensors 2022, 22, 8299. [Google Scholar] [CrossRef] [PubMed]
NO | Epoch | Learning Rate | Momentum Alpha | Hidden Layers | Neurons | Accuracy (%) | MSE | Recall | Precision | Specificity | F1-Score | Geomean | Execution Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 300 | 0.3 | 0.04 | 4 | 10 | 80 | 0.20 | 0.67 | 0.67 | 0.92 | 0.67 | 0.74 | 32 |
2 | 500 | 0.4 | 0.02 | 4 | 10 | 80 | 0.20 | 0.70 | 0.70 | 0.89 | 0.70 | 0.74 | 52 |
3 | 500 | 0.5 | 0.05 | 4 | 10 | 80 | 0.20 | 0.67 | 0.67 | 0.92 | 0.67 | 0.74 | 53 |
4 | 500 | 0.4 | 0.02 | 3 | 10 | 77.8 | 0.22 | 0.61 | 0.61 | 0.94 | 0.61 | 0.71 | 49 |
5 | 500 | 0.4 | 0.02 | 3 | 4 | 77.8 | 0.22 | 0.63 | 0.63 | 0.92 | 0.63 | 0.71 | 44 |
6 | 500 | 0.4 | 0.05 | 3 | 10 | 75.6 | 0.24 | 0.70 | 0.70 | 0.80 | 0.70 | 0.69 | 23 |
7 | 500 | 0.4 | 0.05 | 3 | 4 | 77.8 | 0.22 | 0.74 | 0.74 | 0.80 | 0.74 | 0.71 | 18 |
8 | 5000 | 0.4 | 0.05 | 3 | 4 | 72.2 | 0.28 | 0.63 | 0.63 | 0.79 | 0.63 | 0.65 | 183 |
9 | 500 | 0.3 | 0.05 | 3 | 4 | 77.8 | 0.22 | 0.68 | 0.68 | 0.85 | 0.68 | 0.71 | 23 |
10 | 1000 | 0.4 | 0.05 | 4 | 10 | 80 | 0.20 | 0.72 | 0.72 | 0.87 | 0.72 | 0.74 | 59 |
11 | 500 | 0.4 | 0.05 | 4 | 4 | 81.1 | 0.19 | 0.90 | 0.90 | 0.75 | 0.90 | 0.76 | 43 |
12 | 500 | 0.6 | 0.05 | 4 | 4 | 84.4 | 0.16 | 0.71 | 0.71 | 0.98 | 0.71 | 0.80 | 24 |
13 | 500 | 1 | 0.05 | 3 | 4 | 78.9 | 0.21 | 0.83 | 0.83 | 0.74 | 0.83 | 0.73 | 18 |
14 | 1000 | 1 | 0.05 | 3 | 4 | 71.1 | 0.29 | 0.75 | 0.75 | 0.67 | 0.75 | 0.64 | 37 |
15 | 5000 | 0.4 | 0.05 | 3 | 10 | 72.2 | 0.28 | 0.80 | 0.80 | 0.64 | 0.80 | 0.65 | 23 |
16 | 500 | 0.4 | 0.05 | 5 | 10 | 41.1 | 0.59 | 1.00 | 1.00 | 0.02 | 1.00 | 0.33 | 32 |
17 | 500 | 0.2 | 0.05 | 3 | 4 | 75.6 | 0.24 | 0.76 | 0.76 | 0.76 | 0.76 | 0.69 | 18 |
18 | 500 | 0.3 | 0.05 | 4 | 10 | 71.1 | 0.29 | 0.60 | 0.60 | 0.79 | 0.60 | 0.64 | 28.1 |
19 | 500 | 0.2 | 0.05 | 3 | 4 | 78.9 | 0.21 | 0.60 | 0.60 | 0.96 | 0.60 | 0.73 | 19.0 |
20 | 500 | 0.7 | 0.05 | 4 | 10 | 74.4 | 0.26 | 0.74 | 0.74 | 0.75 | 0.74 | 0.68 | 27.8 |
Classifier | Accuracy (%) | MSE | Recall | Precision | Specificity | F1-Score | AROC | Geomean | Execution Time (s) |
---|---|---|---|---|---|---|---|---|---|
DT | 56.6 | 0.433 | 0.231 | 0.231 | 0.824 | 0.231 | 0.231 | 0.481 | 0.336 |
SVM | 81.1 | 0.189 | 0.822 | 0.822 | 0.800 | 0.822 | 0.822 | 0.755 | 0.909 |
MLPNN | 84.4 | 0.156 | 0.711 | 0.711 | 0.978 | 0.711 | 0.711 | 0.796 | 24 |
RFC | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
KNN | 61.1 | 0.39 | 0 | NaN | 1 | NaN | 0 | 0.527 | 0.614 |
Naïve Bayes | 42.2 | 0.58 | 0.1 | 0.2 | 0.68 | 0.133 | 0.1 | 0.340 | 0.078 |
Solution No | F_obj | M_Iter | NO Neuron | LB | UB | Dim | Epochs | SF | Accuracy (%) | MSE | Recall | Precision | Specificity | F1-Score | Geomean | Execution Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | 20 | 50 | 4 | −4 | 1 | 13 | 500 | 7 | 81.1 | 0.2 | 0.80 | 0.85 | 0.83 | 0.82 | 0.75 | 25 |
20 | 24 | 50 | 4 | −4 | 1 | 13 | 500 | 9 | 83.3 | 0.2 | 0.79 | 0.85 | 0.87 | 0.82 | 0.78 | 25 |
5 | 24 | 10 | 4 | −4 | 1 | 13 | 2000 | 7 | 82.2 | 0.2 | 0.86 | 0.79 | 0.79 | 0.82 | 0.768 | 100 |
20 | 21 | 50 | 4 | −4 | 1 | 13 | 2000 | 8 | 81.1 | 0.2 | 0.73 | 0.86 | 0.89 | 0.79 | 0.755 | 107 |
20 | 22 | 50 | 10 | −4 | 1 | 13 | 2000 | 10 | 82.2 | 0.2 | 0.71 | 0.88 | 0.92 | 0.78 | 0.768 | 133 |
20 | 24 | 50 | 10 | −500 | 500 | 13 | 5000 | 10 | 80.0 | 0.2 | 0.68 | 0.77 | 0.88 | 0.72 | 0.741 | 230 |
2 | 24 | 10 | 4 | −500 | 500 | 13 | 5000 | 9 | 80.0 | 0.20 | 0.74 | 0.78 | 0.84 | 0.76 | 0.741 | 235 |
2 | 8 | 10 | 4 | −4 | 1 | 13 | 500 | 8 | 83.3 | 0.2 | 0.80 | 0.78 | 0.85 | 0.79 | 0.782 | 28 |
2 | 8 | 10 | 4 | −4 | 1 | 13 | 500 | 8 | 85.6 | 0.1 | 0.84 | 0.86 | 0.87 | 0.85 | 0.809 | 33 |
2 | 11 | 10 | 4 | −4 | 1 | 13 | 500 | 6 | 83.3 | 0.2 | 0.84 | 0.78 | 0.83 | 0.81 | 0.782 | 22 |
2 | 13 | 10 | 4 | −4 | 1 | 13 | 500 | 11 | 84.4 | 0.2 | 0.84 | 0.80 | 0.85 | 0.82 | 0.796 | 35 |
2 | 20 | 10 | 4 | 0 | 1 | 13 | 500 | 12 | 88.9 | 0.1 | 0.84 | 0.89 | 0.92 | 0.86 | 0.852 | 27 |
2 | 20 | 7 | 4 | 0 | 1 | 13 | 500 | 11 | 85.6 | 0.1 | 0.85 | 0.83 | 0.86 | 0.84 | 0.809 | 26 |
2 | 20 | 5 | 4 | 0 | 1 | 12 | 500 | 12 | 85.6 | 0.1 | 0.79 | 0.93 | 0.93 | 0.85 | 0.809 | 27 |
Solution No | F_obj | M_Iter | NO Neuron | LB | UB | Dim | Epochs | SF | Accuracy (%) | MSE | Recall | Precision | Specificity | F1-Score | Geomean | Execution Time (s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | 20 | 50 | 4 | 0 | 1 | 13 | 500 | 10 | 81.7 | 0.18 | 0.80 | 0.77 | 0.83 | 0.78 | 0.761 | 25 |
20 | 24 | 50 | 4 | −4 | 1 | 13 | 500 | 7 | 85.0 | 0.2 | 0.68 | 0.94 | 0.97 | 0.79 | 0.803 | 25 |
5 | 24 | 10 | 4 | −4 | 1 | 13 | 2000 | 9 | 73.3 | 0.3 | 0.67 | 0.67 | 0.78 | 0.67 | 0.662 | 103 |
20 | 21 | 50 | 4 | −4 | 1 | 13 | 2000 | 10 | 81.7 | 0.9 | 0.64 | 0.95 | 0.97 | 0.77 | 0.761 | 104 |
20 | 23 | 50 | 10 | 0 | 10 | 13 | 2000 | 12 | 80.0 | 0.2 | 0.71 | 0.71 | 0.85 | 0.71 | 0.569 | 143 |
2 | 8 | 10 | 10 | −4 | 1 | 13 | 500 | 7 | 71.7 | 0.3 | 0.62 | 0.75 | 0.81 | 0.68 | 0.741 | 34 |
2 | 10 | 10 | 10 | −4 | 1 | 13 | 500 | 8 | 73.3 | 0.3 | 0.74 | 0.63 | 0.73 | 0.68 | 0.682 | 34 |
2 | 11 | 10 | 10 | −4 | 1 | 13 | 500 | 8 | 85.0 | 0.2 | 0.88 | 0.79 | 0.82 | 0.84 | 0.643 | 34 |
2 | 11 | 10 | 10 | −600 | 600 | 13 | 500 | 7 | 65.0 | 0.4 | 0.59 | 0.74 | 0.73 | 0.66 | 0.662 | 34 |
2 | 12 | 10 | 4 | −50 | 50 | 13 | 500 | 9 | 63.3 | 0.4 | 0.67 | 0.63 | 0.60 | 0.65 | 0.803 | 28 |
2 | 20 | 10 | 4 | 0 | 1 | 13 | 500 | 12 | 81.7 | 0.2 | 0.88 | 0.73 | 0.77 | 0.80 | 0.569 | 26 |
2 | 20 | 7 | 4 | 0 | 1 | 13 | 500 | 12 | 83.3 | 0.2 | 0.81 | 0.86 | 0.86 | 0.83 | 0.551 | 26 |
2 | 20 | 5 | 10 | 0 | 1 | 12 | 500 | 12 | 78.3 | 0.22 | 0.75 | 0.78 | 0.81 | 0.76 | 0.761 | 33 |
20 | 2 | 50 | 10 | −50 | 50 | 10 | 500 | 5 | 76.7 | 0.23 | 0.74 | 0.61 | 0.78 | 0.67 | 0.782 | 26 |
10 | 20 | 20 | 10 | −100 | 100 | 13 | 500 | 9 | 86.7 | 0.13 | 0.85 | 0.85 | 0.88 | 0.85 | 0.721 | 25 |
20 | 4 | 50 | 10 | −100 | 100 | 13 | 500 | 5 | 75.0 | 0.3 | 0.70 | 0.73 | 0.79 | 0.72 | 0.701 | 25 |
Solution No | F_obj | M_Iter | NO Neuron | LB | UB | Dim | Epochs | SF | Accuracy (%) | MSE | Recall | Precision | Specificity | F1-Score | Geomean | Execution Time (S) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | 20 | 50 | 4 | −4 | 1 | 13 | 500 | 6 | 60.0 | 0.40 | 0.47 | 0.73 | 0.77 | 0.57 | 0.516 | 35 |
20 | 24 | 50 | 4 | −4 | 1 | 13 | 500 | 6 | 53.3 | 0.467 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 36 |
5 | 24 | 10 | 4 | −4 | 1 | 13 | 2000 | 8 | 53.3 | 0.467 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 87 |
20 | 21 | 50 | 4 | −4 | 1 | 13 | 2000 | 8 | 50.0 | 0.50 | 0.33 | 0.50 | 0.67 | 0.40 | 0.414 | 149 |
20 | 22 | 50 | 10 | 0 | 10 | 13 | 2000 | 11 | 53.3 | 0.467 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 142 |
20 | 23 | 50 | 10 | 0 | 10 | 13 | 2000 | 13 | 56.7 | 0.433 | 0.41 | 0.70 | 0.77 | 0.52 | 0.481 | 148 |
2 | 24 | 10 | 10 | −500 | 500 | 13 | 500 | 8 | 60.0 | 0.40 | 0.43 | 0.60 | 0.75 | 0.50 | 0.516 | 32 |
2 | 8 | 10 | 10 | −4 | 1 | 13 | 500 | 13 | 43.3 | 0.567 | 0.00 | NaN | 1.00 | NaN | 0.350 | 32 |
2 | 10 | 10 | 4 | −4 | 1 | 13 | 500 | 9 | 53.3 | 0.467 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 22 |
2 | 11 | 10 | 4 | −4 | 1 | 13 | 500 | 9 | 53.3 | 0.4667 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 22 |
2 | 11 | 10 | 4 | −600 | 600 | 13 | 500 | 8 | 56.7 | 0.433 | 0.41 | 0.70 | 0.77 | 0.52 | 0.481 | 22 |
2 | 12 | 10 | 4 | −50 | 50 | 13 | 500 | 10 | 53.3 | 0.467 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 23 |
2 | 20 | 7 | 4 | 0 | 1 | 13 | 500 | 13 | 56.7 | 0.433 | 0.47 | 0.67 | 0.69 | 0.55 | 0.481 | 24.1 |
2 | 20 | 10 | 4 | 0 | 1 | 13 | 500 | 10 | 60.0 | 0.40 | 0.47 | 0.73 | 0.77 | 0.57 | 0.516 | 23.16 |
2 | 20 | 5 | 10 | 0 | 1 | 12 | 500 | 12 | 53.3 | 0.467 | 0.35 | 0.67 | 0.77 | 0.46 | 0.447 | 32.12 |
Method | Accuracy (%) | MSE | AROC | F1-Score | Geomean |
---|---|---|---|---|---|
MLPNN | 84.444 | 0.156 | 0.711 | 0.711 | 0.796 |
MLPNN-AOA | 88.89 | 0.11 | 0.84 | 0.860 | 0.852 |
Improvement (%) | 5.26 | 29.48 | 18.14 | 20.95 | 7.03 |
Method | Mean | Standard Deviation | Standard Error Mean |
---|---|---|---|
MLPNN-AOA | 83.332 | 2.504 | 0.669 |
MLPNN | 78.174 | 3.448 | 0.921 |
No | FS Algorithms | No. of FS | FS | Accuracy (%) |
---|---|---|---|---|
1 | Relief | 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 78.14 |
2 | Info gain | 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 80.37 |
3 | Chi squared | 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 80.37 |
4 | Filtered subset | 6 | 3, 8, 9, 10, 12, 13 | 78.88 |
5 | One-attribute-based algorithm | 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 79.25 |
6 | Consistency based | 10 | 1, 2, 3, 7, 8, 9, 10, 11, 12, 13 | 78.14 |
7 | Gain ratio | 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 78.88 |
8 | Filtered attribute | 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | 80.37 |
9 | CFS | 8 | 3, 7, 8, 9, 10, 11, 12, 13 | 82.22 |
10 | GA | 6 | 3, 7, 8, 9, 10, 13 | 79.81 |
11 | PSO | 6 | 3, 7, 8, 9, 10, 13 | 80.54 |
12 | MLPNN-AOA | 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 | 88.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, F.A.; Almanaseer, H.; Jaradat, G.; Jaradat, A.; Alsmadi, M.K.; Jawarneh, S.; Almurayh, A.S.; Alqurni, J.; Alfagham, H. Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction. Mach. Learn. Knowl. Extr. 2024, 6, 987-1008. https://doi.org/10.3390/make6020046
Alghamdi FA, Almanaseer H, Jaradat G, Jaradat A, Alsmadi MK, Jawarneh S, Almurayh AS, Alqurni J, Alfagham H. Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction. Machine Learning and Knowledge Extraction. 2024; 6(2):987-1008. https://doi.org/10.3390/make6020046
Chicago/Turabian StyleAlghamdi, Fahad A., Haitham Almanaseer, Ghaith Jaradat, Ashraf Jaradat, Mutasem K. Alsmadi, Sana Jawarneh, Abdullah S. Almurayh, Jehad Alqurni, and Hayat Alfagham. 2024. "Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction" Machine Learning and Knowledge Extraction 6, no. 2: 987-1008. https://doi.org/10.3390/make6020046
APA StyleAlghamdi, F. A., Almanaseer, H., Jaradat, G., Jaradat, A., Alsmadi, M. K., Jawarneh, S., Almurayh, A. S., Alqurni, J., & Alfagham, H. (2024). Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction. Machine Learning and Knowledge Extraction, 6(2), 987-1008. https://doi.org/10.3390/make6020046