Preface to “Applications of Partial Differential Equations in Engineering”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valbuena, S.; Vega, C.A. Using a Separable Mathematical Entropy to Construct Entropy-Stable Schemes for a Reduced Blood Flow Model. Mathematics 2022, 10, 3314. [Google Scholar] [CrossRef]
- Mahariq, I.; Giden, I.H.; Alboon, S.; Aly, W.H.F.; Youssef, A.; Kurt, H. Investigation and Analysis of Acoustojets by Spectral Element Method. Mathematics 2022, 10, 3145. [Google Scholar] [CrossRef]
- Causanilles, F.S.V.; Baskonus, H.M.; Guirao, J.L.G.; Bermúdez, G.R. Some Important Points of the Josephson Effect via Two Superconductors in Complex Bases. Mathematics 2022, 10, 2591. [Google Scholar] [CrossRef]
- Zheng, P.; Hou, B.; Zou, M. Magnetorheological Fluid of High-Speed Unsteady Flow in a Narrow-Long Gap: An Unsteady Numerical Model and Analysis. Mathematics 2022, 10, 2493. [Google Scholar] [CrossRef]
- Benito, J.J.; García, Á.; Negreanu, M.; Ureña, F.; Vargas, A.M. A Novel Spatio-Temporal Fully Meshless Method for Parabolic PDEs. Mathematics 2022, 10, 1870. [Google Scholar] [CrossRef]
- Wu, S.-F. Multiple Comparison Procedures for Exponential Mean Lifetimes Compared with Several Controls. Mathematics 2022, 10, 609. [Google Scholar] [CrossRef]
- Wu, S.-F.; Liu, T.-H.; Lai, Y.-H.; Chang, W.-T. A Study on the Experimental Design for the Lifetime Performance Index of Rayleigh Lifetime Distribution under Progressive Type I Interval Censoring. Mathematics 2022, 10, 517. [Google Scholar] [CrossRef]
- García, Á.; Negreanu, M.; Ureña, F.; Vargas, A.M. A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes. Mathematics 2021, 9, 2843. [Google Scholar] [CrossRef]
- Dostál, J.; Havlena, V. Mixed Mesh Finite Volume Method for 1D Hyperbolic Systems with Application to Plug-Flow Heat Exchangers. Mathematics 2021, 9, 2609. [Google Scholar] [CrossRef]
- Murillo-García, O.F.; Jurado, F. Adaptive Boundary Control for a Certain Class of Reaction–Advection–Diffusion System. Mathematics 2021, 9, 2224. [Google Scholar] [CrossRef]
- Aly, E.H.; Roşca, A.V.; C, N. Roşca and Ioan Pop. Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect. Mathematics 2021, 9, 2220. [Google Scholar] [CrossRef]
- Wu, S.-F.; Xie, Y.-J.; Liao, M.-F.; Chang, W.-T. Reliability Sampling Design for the Lifetime Performance Index of Gompertz Lifetime Distribution under Progressive Type I Interval Censoring. Mathematics 2021, 9, 2109. [Google Scholar] [CrossRef]
- Lai, J.; Liu, H. On a Novel Numerical Scheme for Riesz Fractional Partial Differential Equations. Mathematics 2021, 9, 2014. [Google Scholar] [CrossRef]
- Treanţă, S. On a Class of Second-Order PDE&PDI Constrained Robust Modified Optimization Problems. Mathematics 2021, 9, 1473. [Google Scholar] [CrossRef]
- Benito, J.J.; García, Á.; Gavete, M.L.; Negreanu, M.; Ureña, F.; Vargas, A.M. Convergence and Numerical Solution of a Model for Tumor Growth. Mathematics 2021, 9, 1355. [Google Scholar] [CrossRef]
- Hwang, J.; Shin, S.; Shin, M.; Hwang, W. Four-Quadrant Riemann Problem for a 2× 2 System II. Mathematics 2021, 9, 592. [Google Scholar] [CrossRef]
- Chashechkin, Y.D. Conventional Partial and Complete Solutions of the Fundamental Equations of Fluid Mechanics in the Problem of Periodic Internal Waves with Accompanying Ligaments Generation. Mathematics 2021, 9, 586. [Google Scholar] [CrossRef]
- Hwang, J.; Shin, S.; Shin, M.; Hwang, W. Four-Quadrant Riemann Problem for a 2 × 2 System Involving Delta Shock. Mathematics 2021, 9, 138. [Google Scholar] [CrossRef]
- Wu, S.-F. Multiple Comparisons for Exponential Median Lifetimes with the Control Based on Doubly Censored Samples. Mathematics 2021, 9, 76. [Google Scholar] [CrossRef]
- Falcó, A.; Hilario, L.; Montés, N.; Mora, M.C.; Nadal, E. Towards a Vector Field Based Approach to the Proper Generalized Decomposition (PGD). Mathematics 2021, 9, 34. [Google Scholar] [CrossRef]
- Salete, E.; Vargas, A.M.; García, Á.; Negreanu, M.; Ureña, J.J.B.F. Complex Ginzburg–Landau Equation with Generalized Finite Differences. Mathematics 2020, 8, 2248. [Google Scholar] [CrossRef]
- Jurado, F.; Ramírez, A.A. State Feedback Regulation Problem to the Reaction-Diffusion Equation. Mathematics 2020, 8, 1983. [Google Scholar] [CrossRef]
- Kamran, K.; Shah, Z.; Kumam, P.; Alreshidi, N.A. A Meshless Method Based on the Laplace Transform for the 2D Multi-Term Time Fractional Partial Integro-Differential Equation. Mathematics 2020, 8, 1972. [Google Scholar] [CrossRef]
- Cruz-Quintero, E.; Jurado, F. Boundary Control for a Certain Class of Reaction-Advection-Diffusion System. Mathematics 2020, 8, 1854. [Google Scholar] [CrossRef]
- Jia, H.; Guo, C. The Application of Accurate Exponential Solution of a Differential Equation in Optimizing Stability Control of One Class of Chaotic System. Mathematics 2020, 8, 1740. [Google Scholar] [CrossRef]
- Khalique, C.M.; Adeyemo, O.D. Closed-Form Solutions and Conserved Vectors of a Generalized (3+1)-Dimensional Breaking Soliton Equation of Engineering and Nonlinear Science. Mathematics 2020, 8, 1692. [Google Scholar] [CrossRef]
- Wu, S.-F. One-Stage Multiple Comparisons with the Control for Exponential Median Lifetimes under Heteroscedasticity. Mathematics 2020, 8, 1405. [Google Scholar] [CrossRef]
- Alshomrani, A.S. On Generalized Fourier’s and Fick’s Laws in Bio-Convection Flow of Magnetized Burgers’ Nanofluid Utilizing Motile Microorganisms. Mathematics 2020, 8, 1186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ureña, F.; García, Á.; Vargas, A.M. Preface to “Applications of Partial Differential Equations in Engineering”. Mathematics 2023, 11, 199. https://doi.org/10.3390/math11010199
Ureña F, García Á, Vargas AM. Preface to “Applications of Partial Differential Equations in Engineering”. Mathematics. 2023; 11(1):199. https://doi.org/10.3390/math11010199
Chicago/Turabian StyleUreña, Francisco, Ángel García, and Antonio M. Vargas. 2023. "Preface to “Applications of Partial Differential Equations in Engineering”" Mathematics 11, no. 1: 199. https://doi.org/10.3390/math11010199
APA StyleUreña, F., García, Á., & Vargas, A. M. (2023). Preface to “Applications of Partial Differential Equations in Engineering”. Mathematics, 11(1), 199. https://doi.org/10.3390/math11010199